Effects of 3-aminobenzamide on the rejoining of DNA-strand breaks in mammalian cells exposed to methyl methanesulphonate; role of poly(ADP-ribose) polymerase. 1988

G Ahnström, and M Ljungman
University of Stockholm, Department of Radiobiology, Sweden.

The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase, on DNA-repair processes has been investigated after treating V79 hamster cells with methyl methanesulphonate (MMS). Repair activity was observed as changes in DNA-strand break levels. MMS induces transient strand breaks, the level of which slowly decreases with time. Addition of 3AB leads to a rapid increase in the number of breaks. The level of breaks increases linearly with time until it suddenly levels off. Increasing the concentration of 3AB does not change the slope of this curve, but the steady-state level of breaks increases. The incision-rejoining kinetics indicates that 3AB induces a delay in the strand-break rejoining process. In the absence of 3AB the breaks have a lifetime of 1-2 min and this is increased by a factor of 5 in the presence of 5 mM 3AB.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D000067856 Poly(ADP-ribose) Polymerase Inhibitors Chemicals and drugs that inhibit the action of POLY(ADP-RIBOSE)POLYMERASES. Inhibitors of Poly(ADP-ribose) Polymerase,PARP Inhibitor,Poly(ADP-Ribose) Polymerase Inhibitor,Poly(ADP-ribosylation) Inhibitor,Inhibitors of Poly(ADP-ribose) Polymerases,PARP Inhibitors,Poly(ADP-ribosylation) Inhibitors,Inhibitor, PARP,Inhibitors, PARP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001549 Benzamides BENZOIC ACID amides.

Related Publications

G Ahnström, and M Ljungman
July 2019, Nature communications,
G Ahnström, and M Ljungman
October 1995, Trends in biochemical sciences,
G Ahnström, and M Ljungman
December 2003, International journal of oncology,
G Ahnström, and M Ljungman
September 1989, Mutation research,
G Ahnström, and M Ljungman
October 1981, Biochemical and biophysical research communications,
Copied contents to your clipboard!