Effects of dietary-fish-oil feeding on muscle growth and damage in the rat. 1988

M J Jackson, and J Roberts, and R H Edwards
Department of Medicine, University of Liverpool.

1. Giving diets containing 100 g fully-refined, non-hydrogenated fish oil/kg to rats caused substantial modification of skeletal-muscle-membrane fatty acid composition compared with control animals fed on an equivalent diet containing 100 g maize oil/kg. 2. Total muscle arachidonic acid (20:4 omega 6) was reduced from 138 (SD 25) mg/g total fatty acids to 15 (SD 2) mg/g and phospholipid arachidonic acid content showed equivalent changes. 3. Reduction in muscle arachidonic acid content had no influence on the growth of individual muscles. 4. Variation in muscle fatty acid composition exacerbated the response of muscle to calcium-induced damage assessed by efflux of intracellular creatine kinase (EC 2.7.3.2). 5. It is concluded that metabolites of arachidonic acid are unlikely to be primary controlling factors of muscle growth or specific mediators of muscle sarcolemmal damage leading to enzyme efflux.

UI MeSH Term Description Entries
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females
D005395 Fish Oils Oils high in unsaturated fats extracted from the bodies of fish or fish parts, especially the LIVER. Those from the liver are usually high in VITAMIN A. The oils are used as DIETARY SUPPLEMENTS. They are also used in soaps and detergents and as protective coatings. Fish Liver Oils,Fish Oil,Liver Oils, Fish,Oil, Fish,Oils, Fish,Oils, Fish Liver
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

M J Jackson, and J Roberts, and R H Edwards
March 2013, Cell and tissue research,
M J Jackson, and J Roberts, and R H Edwards
July 2003, Free radical biology & medicine,
M J Jackson, and J Roberts, and R H Edwards
September 1998, Lipids,
M J Jackson, and J Roberts, and R H Edwards
January 1994, Investigative ophthalmology & visual science,
M J Jackson, and J Roberts, and R H Edwards
January 1990, Kidney international,
M J Jackson, and J Roberts, and R H Edwards
June 2002, Journal of the American College of Nutrition,
M J Jackson, and J Roberts, and R H Edwards
March 1991, Laboratory investigation; a journal of technical methods and pathology,
M J Jackson, and J Roberts, and R H Edwards
July 1992, The American journal of physiology,
M J Jackson, and J Roberts, and R H Edwards
June 2008, Prostaglandins, leukotrienes, and essential fatty acids,
M J Jackson, and J Roberts, and R H Edwards
September 2001, Laeknabladid,
Copied contents to your clipboard!