Undiminished immunologic tolerance to contact sensitivity in mast cell-deficient W/Wv and Sl/Sld mice. 1985

Y A Mekori, and S J Galli

Several mast cell-derived mediators, when tested individually, have actions that may be considered immunosuppressive or anti-inflammatory. Yet evidence concerning the importance of mast cells to the down regulation of T cell-dependent immune responses in vivo is scanty and contradictory. To test directly the net contribution of intact mast cells to the suppression of delayed hypersensitivity reactions in vivo, we attempted to elicit tolerance to contact sensitivity in W/Wv or Sl/Sld mast cell-deficient mice, and compared their responses with those of littermate control mice with normal numbers of mast cells. By using three different measures of delayed hypersensitivity (ear swelling, weight ratios of challenged and control ears, and 125I-IUDR-labeled leukocyte infiltration into challenged and control ears), we detected no deficiency in the 24 hr contact sensitivity reactions to DNFB in control (nontolerized) W/Wv or Sl/Sld mice. We thus confirmed previous work indicating that mast cells are not essential for the induction and elicitation of delayed hypersensitivity. Furthermore, mast cell-deficient and control mice developed equivalent levels of tolerance to contact sensitivity. This was true for tolerance induced by DNBS administered i.v. 7 days before epicutaneous sensitization with DNFB, and for tolerance induced by supraoptimal sensitization with DNFB. W/Wv and Sl/Sld mice also served as suitable donors and recipients for putative suppressor T cells (Ts) induced by i.v. DNBS. We conclude that mast cells make little or no contribution to the modulation of Ts activity in two different models of Ts-dependent tolerance to contact sensitivity.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D003877 Dermatitis, Contact A type of acute or chronic skin reaction in which sensitivity is manifested by reactivity to materials or substances coming in contact with the skin. It may involve allergic or non-allergic mechanisms. Contact Dermatitis,Dermatitis Venenata,Eczema, Contact,Hypersensitivity, Contact,Sensitivity, Contact,Contact Dermatitides,Contact Eczema,Contact Hypersensitivities,Contact Hypersensitivity,Contact Sensitivities,Contact Sensitivity,Dermatitides, Contact,Hypersensitivities, Contact,Sensitivities, Contact
D004139 Dinitrofluorobenzene Irritants and reagents for labeling terminal amino acid groups. DNFB,Fluorodinitrobenzene,1-Fluoro-2,4-dinitrobenzene,1 Fluoro 2,4 dinitrobenzene
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

Y A Mekori, and S J Galli
January 1987, Experimental cell biology,
Y A Mekori, and S J Galli
October 1986, Biochimica et biophysica acta,
Y A Mekori, and S J Galli
January 1991, Bone,
Y A Mekori, and S J Galli
May 1993, Infection and immunity,
Y A Mekori, and S J Galli
January 1987, International archives of allergy and applied immunology,
Y A Mekori, and S J Galli
July 1990, British journal of haematology,
Copied contents to your clipboard!