POT1-TPP1 differentially regulates telomerase via POT1 His266 and as a function of single-stranded telomere DNA length. 2019

Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106.

Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein-protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length. We further determined that the chronic lymphocytic leukemia-associated H266L substitution significantly reduced POT1-TPP1 binding to short ssDNA substrates; however, it only moderately impaired the heterodimer binding to long ssDNA substrates containing multiple protein binding sites. Additionally, we identified a telomerase inhibitory role when several native POT1-TPP1 proteins coat physiologically relevant lengths of telomere ssDNA. This POT1-TPP1 complex-mediated inhibition of telomerase is abrogated in the context of the POT1 H266L mutation, which leads to telomere overextension in a malignant cellular environment.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000089804 Shelterin Complex A TELOMERE cap complex consisting of telomere-specific proteins in association with telomeric DNA such as telomeric dsDNA-sDNA junction. They are involved in the protection of chromosome ends and TELOMERASE regulation and play a role in CELLULAR SENESCENCE and ageing-related pathology. In general it consists of six mostly TELOMERE-BINDING PROTEINS (POT1, RAP1, TIN2, TPP1, TRF1, and TRF2). CST Complex,Ctc1-Stn1-Ten1 Complex,POT1-TPP1 Shelterin Complex,Telomere Cap Complex,Telomere POT1-TPP1 Complex,Telomeric Capping Complex,Telomeric Stn1-Ten1 Capping Complex,Telosome,Capping Complex, Telomeric,Complex, CST,Complex, Ctc1-Stn1-Ten1,Complex, POT1-TPP1 Shelterin,Complex, Shelterin,Complex, Telomere POT1-TPP1,Complex, Telomeric Capping,Ctc1 Stn1 Ten1 Complex,POT1 TPP1 Shelterin Complex,POT1-TPP1 Complex, Telomere,Shelterin Complex, POT1-TPP1,Telomere POT1 TPP1 Complex,Telomeric Stn1 Ten1 Capping Complex,Telosomes
D015451 Leukemia, Lymphocytic, Chronic, B-Cell A chronic leukemia characterized by abnormal B-lymphocytes and often generalized lymphadenopathy. In patients presenting predominately with blood and bone marrow involvement it is called chronic lymphocytic leukemia (CLL); in those predominately with enlarged lymph nodes it is called small lymphocytic lymphoma. These terms represent spectrums of the same disease. B-Cell Leukemia, Chronic,B-Lymphocytic Leukemia, Chronic,Chronic Lymphocytic Leukemia,Leukemia, B-Cell, Chronic,Leukemia, Lymphocytic, Chronic,Lymphocytic Leukemia, Chronic, B-Cell,Lymphoma, Small Lymphocytic,B-Cell Chronic Lymphocytic Leukemia,B-Cell Malignancy, Low-Grade,Diffuse Well-Differentiated Lymphocytic Lymphoma,Disrupted In B-Cell Malignancy,Leukemia, B Cell, Chronic,Leukemia, Chronic Lymphatic,Leukemia, Chronic Lymphocytic,Leukemia, Chronic Lymphocytic, B-Cell,Leukemia, Lymphoblastic, Chronic,Leukemia, Lymphocytic, Chronic, B Cell,Lymphoblastic Leukemia, Chronic,Lymphocytic Leukemia, Chronic,Lymphocytic Leukemia, Chronic, B Cell,Lymphocytic Lymphoma,Lymphocytic Lymphoma, Diffuse, Well Differentiated,Lymphocytic Lymphoma, Diffuse, Well-Differentiated,Lymphocytic Lymphoma, Well Differentiated,Lymphocytic Lymphoma, Well-Differentiated,Lymphoma, Lymphocytic,Lymphoma, Lymphocytic, Diffuse, Well Differentiated,Lymphoma, Lymphocytic, Diffuse, Well-Differentiated,Lymphoma, Lymphocytic, Well Differentiated,Lymphoma, Lymphocytic, Well-Differentiated,Lymphoma, Lymphoplasmacytoid, CLL,Lymphoma, Small Lymphocytic, Plasmacytoid,Lymphoma, Small-Cell,Lymphoplasmacytoid Lymphoma, CLL,Small-Cell Lymphoma,B Cell Chronic Lymphocytic Leukemia,B Cell Leukemia, Chronic,B Cell Malignancy, Low Grade,B Lymphocytic Leukemia, Chronic,B-Cell Leukemias, Chronic,B-Cell Malignancies, Low-Grade,B-Lymphocytic Leukemias, Chronic,CLL Lymphoplasmacytoid Lymphoma,CLL Lymphoplasmacytoid Lymphomas,Chronic B-Cell Leukemia,Chronic B-Cell Leukemias,Chronic B-Lymphocytic Leukemia,Chronic B-Lymphocytic Leukemias,Chronic Lymphatic Leukemia,Chronic Lymphatic Leukemias,Chronic Lymphoblastic Leukemia,Chronic Lymphoblastic Leukemias,Chronic Lymphocytic Leukemias,Diffuse Well Differentiated Lymphocytic Lymphoma,Disrupted In B Cell Malignancy,Leukemia, Chronic B-Cell,Leukemia, Chronic B-Lymphocytic,Leukemias, Chronic B-Cell,Leukemias, Chronic B-Lymphocytic,Leukemias, Chronic Lymphatic,Leukemias, Chronic Lymphoblastic,Low-Grade B-Cell Malignancies,Low-Grade B-Cell Malignancy,Lymphatic Leukemia, Chronic,Lymphatic Leukemias, Chronic,Lymphoblastic Leukemias, Chronic,Lymphocytic Leukemias, Chronic,Lymphocytic Lymphoma, Small,Lymphocytic Lymphomas,Lymphocytic Lymphomas, Small,Lymphocytic Lymphomas, Well-Differentiated,Lymphoma, CLL Lymphoplasmacytoid,Lymphoma, Small Cell,Lymphoma, Well-Differentiated Lymphocytic,Lymphomas, CLL Lymphoplasmacytoid,Lymphomas, Lymphocytic,Lymphomas, Small Lymphocytic,Lymphomas, Small-Cell,Lymphomas, Well-Differentiated Lymphocytic,Lymphoplasmacytoid Lymphomas, CLL,Malignancies, Low-Grade B-Cell,Malignancy, Low-Grade B-Cell,Small Cell Lymphoma,Small Lymphocytic Lymphoma,Small Lymphocytic Lymphomas,Small-Cell Lymphomas,Well-Differentiated Lymphocytic Lymphoma,Well-Differentiated Lymphocytic Lymphomas
D016615 Telomere A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs. Telomeres
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations
D045325 HCT116 Cells Human COLORECTAL CARCINOMA cell line. HCT 116 Cells,HCT-116 Cells,Cell, HCT 116,Cell, HCT-116,Cell, HCT116,Cells, HCT 116,Cells, HCT-116,Cells, HCT116,HCT 116 Cell,HCT-116 Cell,HCT116 Cell
D059505 Telomere Homeostasis Maintenance of TELOMERE length. During DNA REPLICATION, chromosome ends loose some of their telomere sequence (TELOMERE SHORTENING.) Various cellular mechanism are involved in repairing, extending, and recapping the telomere ends. Telomere Length Maintenance,Telomere Lengthening,Homeostasis, Telomere,Length Maintenance, Telomere,Lengthening, Telomere,Maintenance, Telomere Length

Related Publications

Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
June 2008, Science (New York, N.Y.),
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
January 2020, Computational and structural biotechnology journal,
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
February 2007, Nature,
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
July 2011, Journal of molecular biology,
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
August 2016, Genes to cells : devoted to molecular & cellular mechanisms,
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
January 2011, Methods in molecular biology (Clifton, N.J.),
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
June 2013, The Journal of biological chemistry,
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
October 2009, Molecular and cellular biology,
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
July 2016, Journal of molecular biology,
Mengyuan Xu, and Janna Kiselar, and Tawna L Whited, and Wilnelly Hernandez-Sanchez, and Derek J Taylor
April 2023, Nature genetics,
Copied contents to your clipboard!