An electrophysiological study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis. 1988

R W Dykes, and Y Lamour
Laboratoire de Neurophysiologie Pharmacologique, Institute National de la Santé et de la Recherche Médicale, Unité 161, Paris, France.

1. Recordings were made from 545 neurons in somatosensory granular cortex of anesthetized Sprague-Dawley rats. Of this sample, 32% were active spontaneously. Active neurons were not distributed uniformly throughout cortex but were most common in layer V. The highest mean spontaneous discharge frequency also was found in this layer. Cells with the lowest rates of spontaneous activity were located immediately above and below. One subset of spontaneously active neurons was characterized by an unusually high discharge frequency modulated by somatic stimulation. 2. Only 25.8% of the 534 neurons tested in granular cortex could be activated by somatic stimuli. Only 9.4% had cutaneous receptive fields, and 2.4% received deep inputs. The remainder (14.0%) were driven by higher intensity stimuli and could not be classified unequivocally as either cutaneous or deep. The 50 neurons with cutaneous receptive fields were located in the middle third of the cortex, and those with the largest receptive fields were found most superficially. Neurons driven by somatic stimuli were found most frequently in layer Vb, where 44.5% of the sample confirmed histologically to be in layer Vb could be excited. 3. The large proportion of neurons lacking demonstrable somatic inputs was attributed to the use of iontophoretically administered glutamate, which allowed the detection of many unresponsive neurons. This proportion was not reduced by the use of nitrous oxide and halothane as an anesthetic. 4. Neurons activated only by deep inputs were found on the medial and rostral edge of the hindlimb granular cortex, suggesting that deep and cutaneous inputs may be segregated in this species. 5. Electrical stimuli applied to the foot pads activated a sample of neurons differing from those driven by natural somatic stimuli in terms of depth, spontaneous activity, probability of somatic input, and probability of activation by the pyramidal tract. 6. Pyramidal tract neurons tended to be located in layer Vb, were active spontaneously, and had evidence of somatic inputs, although most required relatively intense stimuli to be excited. Other neurons activated synaptically from the pyramidal tract were located in the layers immediately above and below the pyramidal tract neurons. These cells were divided into two groups on the basis of action-potential latency, action-potential shape, and sensitivity to acetylcholine.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005121 Extremities The farthest or outermost projections of the body, such as the HAND and FOOT. Limbs,Extremity,Limb
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary

Related Publications

R W Dykes, and Y Lamour
June 2016, Cerebral cortex (New York, N.Y. : 1991),
R W Dykes, and Y Lamour
January 1992, Somatosensory & motor research,
R W Dykes, and Y Lamour
January 1991, Peptides,
R W Dykes, and Y Lamour
September 1990, The Journal of comparative neurology,
R W Dykes, and Y Lamour
March 1995, The European journal of neuroscience,
R W Dykes, and Y Lamour
April 1989, Brain research. Developmental brain research,
Copied contents to your clipboard!