Uridine reverses the toxicity of 3'-azido-3'-deoxythymidine in normal human granulocyte-macrophage progenitor cells in vitro without impairment of antiretroviral activity. 1988

J P Sommadossi, and R Carlisle, and R F Schinazi, and Z Zhou
Department of Pharmacology, University of Alabama, Birmingham 35294.

We evaluated the effects of natural purine and pyrimidine nucleosides on protection from or reversal of 3'-azido-3'-deoxythymidine (AZT) cytotoxicity in human bone marrow progenitor cells by using clonogenic assays. The selectivity of the "protection" or "rescue" agents was examined in evaluating the antiretroviral activity of AZT in combination with these modulating agents and of AZT alone. Following exposure of human granulocyte-macrophage progenitor cells for 2 h to 5 microM AZT (70% inhibitory concentration), increasing concentrations of potential rescue agents were added. Cells were cultured, and colony formation was assessed after 14 days. At concentrations of up to 50 microM no natural 2'-deoxynucleosides, including thymidine, were able to reverse the toxic effects of AZT. Dose-dependent reversal was observed with uridine and cytidine, and essentially complete reversal was achieved with 50 microM uridine. In the protection studies, 100 microM thymidine almost completely antagonized the inhibition of granulocyte-macrophage colony formation produced by 1 microM AZT (50% inhibitory concentration), and 50 microM uridine effected 60% protection against a toxic concentration of AZT (5 microM) (70% inhibitory concentration). The antiretroviral activity of AZT in human peripheral blood mononuclear cells, assessed by revere transcriptase assays, was substantially decreased in the presence of thymidine, whereas no impairment of suppression of viral replication was observed in the presence of uridine in combination with AZT at a molar ratio (uridine/AZT) as high as 10,000. This demonstration of the capacity of uridine to selectively rescue human bone marrow progenitor cells from the cytotoxicity of AZT suggests that use of uridine rescue regimen with AZT may have potential therapeutic benefit in the treatment of acquired immunodeficiency syndrome.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D003562 Cytidine A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. Cytosine Ribonucleoside,Cytosine Riboside,Ribonucleoside, Cytosine,Riboside, Cytosine
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D013936 Thymidine A nucleoside in which THYMINE is linked to DEOXYRIBOSE. 2'-Deoxythymidine,Deoxythymidine,2' Deoxythymidine
D014529 Uridine A ribonucleoside in which RIBOSE is linked to URACIL. Allo-Uridine,Allouridine,Allo Uridine
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U

Related Publications

J P Sommadossi, and R Carlisle, and R F Schinazi, and Z Zhou
July 1987, Antimicrobial agents and chemotherapy,
J P Sommadossi, and R Carlisle, and R F Schinazi, and Z Zhou
July 1988, British journal of haematology,
J P Sommadossi, and R Carlisle, and R F Schinazi, and Z Zhou
April 1992, British journal of haematology,
J P Sommadossi, and R Carlisle, and R F Schinazi, and Z Zhou
May 1996, Immunopharmacology and immunotoxicology,
J P Sommadossi, and R Carlisle, and R F Schinazi, and Z Zhou
January 1998, Anticancer research,
J P Sommadossi, and R Carlisle, and R F Schinazi, and Z Zhou
January 1993, Pathobiology : journal of immunopathology, molecular and cellular biology,
Copied contents to your clipboard!