Development of spinocerebellar afferents in the clawed toad, Xenopus laevis. 1988

J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
Department of Anatomy and Embryology, University of Nijmegen, The Netherlands.

The development of spinocerebellar projections in the clawed toad, Xenopus laevis, was studied with horseradish peroxidase as an anterograde and retrograde tracer. Early in development cells of origin of spinocerebellar projections were found, contralaterally, in or close to the medial motor column. In older tadpoles ipsilaterally projecting spinal neurons were also labeled from the cerebellum. These are virtually indistinguishable from the large primary motoneurons that occupy a very similar position in the spinal cord. Most of the labeled spinal cells were found in the thoracic spinal cord; they lie halfway between the brachial and lumbar secondary motor columns. Surprisingly, no primary spinocerebellar projection arising from dorsal root spinal ganglion cells could be demonstrated in X. laevis tadpoles and adult toads. Therefore, fibers in the cerebellum that were labeled anterogradely from the spinal cord can be expected to originate exclusively from the secondary spinocerebellar tract cells. These fibers appear to cross the cerebellum in or at the border of the granular layer. The present data suggest that in X. laevis early in the development of the cerebellum a distinct secondary spinocerebellar projection is already present, originating in neurons that can be compared with the "spinal border cells" in mammals. The relative sparseness of this secondary spinocerebellar projection and the apparent absence of primary spinocerebellar afferents probably indicate that spinocerebellar pathways are only of minor importance in X. laevis. The possibility remains, however, that the expansion of the secondary spinocerebellar pathway only starts when metamorphosis has been completed.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008297 Male Males
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005260 Female Females
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
July 1970, Comparative biochemistry and physiology,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
March 1964, Experientia,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
May 1964, Journal of molecular biology,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
October 1945, The Anatomical record,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
January 1995, Zhurnal evoliutsionnoi biokhimii i fiziologii,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
August 1994, European journal of morphology,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
January 1985, Folia morphologica,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
January 1965, Folia haematologica (Leipzig, Germany : 1928),
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
January 1995, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association,
J A van der Linden, and H J ten Donkelaar, and R de Boer-van Huizen
May 1947, The American journal of medical technology,
Copied contents to your clipboard!