Transfer of Nitrogen Fixation (nif) Genes to Non-diazotrophic Hosts. 2020

Qin Li, and Sanfeng Chen
State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and, College of Biological Sciences, China Agricultural University, Haidian District Yuanmingyuan West Road No.2, Beijing, P. R. China.

Nitrogen is one of the most important nutrients for plant growth. To enhance crop productivity, chemical nitrogen fertilizer is commonly applied in agriculture. Biological nitrogen fixation, the conversion of atmospheric N2 to NH3 , is an important source of nitrogen input in agriculture and represents a promising substitute for chemical nitrogen fertilizers. However, nitrogen fixation is only sporadically distributed within bacteria and archaea (diazotrophs). Thus, many biologists hope to reconstitute a nitrogenase biosynthetic pathway in a eukaryotic host, with the final aim of developing N2 -fixing cereal crops. With the advent of synthetic biology and a deep understanding of the fundamental genetic determinants necessary to sustain nitrogen fixation in bacteria, much progress has been made toward this goal. Transfer of native and refactored nif (nitrogen fixation) genes to non-diazotrophs has been attempted in model bacteria, yeast, and plants. Specifically, nif genes from Klebsiella oxytoca, Azotobacter vinelandii, and Paenibacillus polymyxa have been successfully transferred and expressed in Escherichia coli, Saccharomyces cerevisiae, and even in the tobacco plant. These advances have laid the groundwork to enable cereal crops to "fix" nitrogen themselves to sustain their growth and yield.

UI MeSH Term Description Entries
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000070057 Paenibacillus polymyxa A species of Paenibacillus formerly classified as Bacillus polymyxa that occurs in marine sediments and soil, especially around plant roots and RHIZOMES where it performs NITROGEN FIXATION. It has activity against several species of pathogenic bacteria and produces POLYMYXINS. Bacillus polymyxa
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants
D016948 Azotobacter vinelandii A species of gram-negative, aerobic bacteria first isolated from soil in Vineland, New Jersey. Ammonium and nitrate are used as nitrogen sources by this bacterium. It is distinguished from other members of its genus by the ability to use rhamnose as a carbon source. (From Bergey's Manual of Determinative Bacteriology, 9th ed) Azotobacter miscellum
D041121 Klebsiella oxytoca A species of gram-negative bacteria causing URINARY TRACT INFECTIONS and SEPTICEMIA. Bacillus oxytocus perniciosus

Related Publications

Qin Li, and Sanfeng Chen
January 1982, Journal of bacteriology,
Qin Li, and Sanfeng Chen
November 1982, Journal of bacteriology,
Qin Li, and Sanfeng Chen
January 1981, Cold Spring Harbor symposia on quantitative biology,
Qin Li, and Sanfeng Chen
June 1979, Proceedings of the National Academy of Sciences of the United States of America,
Qin Li, and Sanfeng Chen
November 1977, Molecular & general genetics : MGG,
Qin Li, and Sanfeng Chen
January 1977, Basic life sciences,
Qin Li, and Sanfeng Chen
May 1993, World journal of microbiology & biotechnology,
Qin Li, and Sanfeng Chen
January 1975, Biochemical and biophysical research communications,
Copied contents to your clipboard!