Interaction of tetanus toxin and toxoid with cultured neuroblastoma cells. Analysis by immunofluorescence. 1977

J M Zimmerman, and J C Piffaretti

The primary interaction of tetanus toxin and toxoid with mouse neuroblastoma cells (C 1300, clone NB2A) in tissue culture was studied using direct immunofluorescence. Experiments were done in standard routine cultures and also those influenced by chemical modulators. There is a difference in the characteristic binding response between the growth culture cells (grown in presence of fetal calf serum) and differentiating culture cells (grown in absence of serum). Exposure to the toxin gives no visible effect on the cell division or viability in growth cultures; whereas in differentiating cells the processes are shortened and the adherence to the glass is diminished without involving significant cell death. The toxoid did not bind at all under the same experimental conditions. Since there was no biological effect in growth cultures we have called this binding ineffective, and in the case of the differentiating cells, effective binding. Stimulation of pinocytosis increases the uptake of toxin in both cultures. Presence of some surface bound toxin still remaining on the differentiating cells indicates the possibility of another sort of mechanism for internalization. Pre-treatment of the cells with neuraminidase or beta-galactosidase to alter the membrane gangliosides eliminates binding in growth cultures but not in differentiating cultures. From these results we suggest that even though the toxin may well bind to gangliosides, at least in the differentiating cultures they are not solely responsible for the fixation. The morphologically observed effective binding is probably that not related to gangliosides.

UI MeSH Term Description Entries
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013744 Tetanus Toxin Protein synthesized by CLOSTRIDIUM TETANI as a single chain of ~150 kDa with 35% sequence identity to BOTULINUM TOXIN that is cleaved to a light and a heavy chain that are linked by a single disulfide bond. Tetanolysin is the hemolytic and tetanospasmin is the neurotoxic principle. The toxin causes disruption of the inhibitory mechanisms of the CNS, thus permitting uncontrolled nervous activity, leading to fatal CONVULSIONS. Clostridial Neurotoxin,Clostridium tetani Toxin,Tetanus Toxins,Neurotoxin, Clostridial,Toxin, Clostridium tetani,Toxin, Tetanus,Toxins, Tetanus
D013745 Tetanus Toxoid Tetanus Vaccine,Toxoid, Tetanus,Vaccine, Tetanus

Related Publications

J M Zimmerman, and J C Piffaretti
October 1969, Australian journal of biological sciences,
J M Zimmerman, and J C Piffaretti
January 1985, Toxicon : official journal of the International Society on Toxinology,
J M Zimmerman, and J C Piffaretti
May 1970, The Journal of the Association of Physicians of India,
J M Zimmerman, and J C Piffaretti
June 1968, Australian journal of biological sciences,
J M Zimmerman, and J C Piffaretti
September 1965, Journal of immunology (Baltimore, Md. : 1950),
J M Zimmerman, and J C Piffaretti
December 1985, Journal of cellular physiology,
J M Zimmerman, and J C Piffaretti
January 1967, Progress in immunobiological standardization,
J M Zimmerman, and J C Piffaretti
January 1954, Zeitschrift fur Hygiene und Infektionskrankheiten; medizinische Mikrobiologie, Immunologie und Virologie,
J M Zimmerman, and J C Piffaretti
January 1974, Journal of hygiene, epidemiology, microbiology, and immunology,
J M Zimmerman, and J C Piffaretti
August 1967, Canadian journal of microbiology,
Copied contents to your clipboard!