The influence of extracellular calcium on microvascular tone in the rat cremaster muscle. 1988

I G Joshua, and J T Fleming, and J P Dowe
Department of Physiology and Biophysics, University of Louisville, Kentucky 40292.

In vivo responses of arterioles and venules to changes in bath calcium concentrations were observed in the cremaster muscle of male Sprague-Dawley rats. Small arterioles (2A, 3A) initially exposed to a solution containing calcium (2.55 mM) significantly dilated in response to a 0-calcium bath. Reexposure to calcium (greater than 0.65 mM) caused 2A and 3A arterioles to constrict to diameters similar to the initial control values. In contrast, large arterioles (1A) and all venules (1V, 2V, 3V) were unresponsive to exposure to a 0-calcium solution or to reexposure to calcium (0.65-5.10 mM). Treatment with mefenamic acid (10 micrograms/ml), a prostaglandin synthesis inhibitor, produced marked constriction of arterioles but not of venules, suggesting the involvement of endogenous vasodilator prostaglandins in the regulation of resting diameters of arterioles. In the presence of mefenamic acid, 1A arterioles dilated when exposed to a 0-calcium solution and constricted back to control diameters following reintroduction of calcium into the bath. These data demonstrate heterogeneity in the responsiveness of cremasteric microvessels to changes in extracellular calcium. The small arterioles were most responsive to calcium. The lack of response by the largest arterioles appears to be due to the dilator influences of endogenous prostaglandins.

UI MeSH Term Description Entries
D008297 Male Males
D008528 Mefenamic Acid A non-steroidal anti-inflammatory agent with analgesic, anti-inflammatory, and antipyretic properties. It is an inhibitor of cyclooxygenase. Apo-Mefenamic,Contraflam,Coslan,Dysman,Mefac,Mefacit,Mefenaminic Acid,Mefic,Nu-Mefenamic,PMS-Mefenamic Acid,Parkemed,Pinalgesic,Ponalar,Ponalgic,Ponmel,Ponstan,Ponstan Forte,Ponstel,Ponsyl,Pontal,Acid, Mefenamic,Apo Mefenamic,Nu Mefenamic,PMS Mefenamic Acid
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009129 Muscle Tonus The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed) Muscle Tension,Muscle Tightness,Muscular Tension,Tension, Muscle,Tension, Muscular,Tightness, Muscle,Tonus, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

I G Joshua, and J T Fleming, and J P Dowe
January 1996, Annals of biomedical engineering,
I G Joshua, and J T Fleming, and J P Dowe
September 1981, The American journal of physiology,
I G Joshua, and J T Fleming, and J P Dowe
September 1989, Microvascular research,
I G Joshua, and J T Fleming, and J P Dowe
January 1987, The American journal of physiology,
I G Joshua, and J T Fleming, and J P Dowe
May 1987, Microvascular research,
I G Joshua, and J T Fleming, and J P Dowe
November 1987, Cardiovascular research,
I G Joshua, and J T Fleming, and J P Dowe
January 1992, Peptides,
I G Joshua, and J T Fleming, and J P Dowe
January 2009, American journal of physiology. Heart and circulatory physiology,
I G Joshua, and J T Fleming, and J P Dowe
July 1988, Microvascular research,
I G Joshua, and J T Fleming, and J P Dowe
January 1989, International angiology : a journal of the International Union of Angiology,
Copied contents to your clipboard!