Microvascular thermal equilibration in rat cremaster muscle. 1996

L Zhu, and D E Lemons, and S Weinbaum
Department of Mechanical Engineering, City College of The City University of New York, NY 10031, USA.

A new experimental approach was developed to obtain the first direct measurements of the axial countercurrent thermal equilibration in a microvascular tissue preparation using high resolution infrared thermography. Detailed surface temperature measurements were obtained for an exteriorized rat cremaster muscle in which pharmacological vasoactive agents were used to change the local blood flow Peclet number from 1 to 14 in the feeding artery. Under normal conditions, only the 1A arteries (> 70 microns diameter) showed thermal nonequilibration with the surrounding tissue. The theoretical model developed by Zhu and Weinbaum (28) for a two-dimensional tissue preparation with arbitrarily embedded countercurrent vessels was modified to include axial conduction and the presence of the supporting glass slide. This modified model was used to interpret the experimental results and to relate the surface temperature profiles to the bulk temperature profiles in the countercurrent artery and vein and the local average tissue temperature in the cross-sectional plane. Surface temperature profiles transverse to the vessel axis are shown to depend significantly on the tissue inlet temperature. The eigenfunction for the axial thermal equilibration depends primarily on the blood flow Peclet number and the environmental convective coefficient. The theoretical results predict that when rho(ar)*Pe is less than 1 mm (the range in our experiments), axial conduction is the dominant mode of axial thermal equilibration. For 1 < rho(ar)*PE < 3 mm, countercurrent blood flow becomes comparable to axial conduction, whereas, when rho(ar)*Pe > 3 mm, countercurrent blood flow is the dominant mode of axial thermal equilibration. Therefore, for rho(ar)*Pe > 3 mm the axial equilibration length is proportional to the blood flow Peclet number, as predicted previously by Zhu and Weinbaum in a study in which axial conduction was neglected. It also is shown that the axial decay of the tissue temperature at low perfusion rates can be described by a simple one-dimensional Weinbaum-Jiji equation with a newly derived conduction shape factor.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D000009 Abdominal Muscles Muscles forming the ABDOMINAL WALL including RECTUS ABDOMINIS; ABDOMINAL OBLIQUE MUSCLES, transversus abdominis, pyramidalis muscles and quadratus abdominis. Cremaster Muscle,Pyramidalis Muscle,Quadratus Abdominis,Transverse Abdominal,Transversus Abdominis,Abdominal Muscle,Abdominal, Transverse,Abdominals, Transverse,Abdomini, Quadratus,Abdominis, Quadratus,Cremaster Muscles,Muscle, Abdominal,Muscle, Cremaster,Muscle, Pyramidalis,Muscles, Abdominal,Muscles, Cremaster,Muscles, Pyramidalis,Pyramidalis Muscles,Quadratus Abdomini,Transverse Abdominals
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D013817 Thermography Imaging the temperatures in a material, or in the body or an organ. Imaging is based on self-emanating infrared radiation (HEAT WAVES), or on changes in properties of the material or tissue that vary with temperature, such as ELASTICITY; MAGNETIC FIELD; or LUMINESCENCE. Temperature Mapping,Mapping, Temperature,Mappings, Temperature,Temperature Mappings
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

L Zhu, and D E Lemons, and S Weinbaum
January 1999, Annals of biomedical engineering,
L Zhu, and D E Lemons, and S Weinbaum
September 1981, The American journal of physiology,
L Zhu, and D E Lemons, and S Weinbaum
January 1987, The American journal of physiology,
L Zhu, and D E Lemons, and S Weinbaum
September 1989, Microvascular research,
L Zhu, and D E Lemons, and S Weinbaum
May 1987, Microvascular research,
L Zhu, and D E Lemons, and S Weinbaum
December 1988, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L Zhu, and D E Lemons, and S Weinbaum
January 1992, Peptides,
L Zhu, and D E Lemons, and S Weinbaum
November 1987, Cardiovascular research,
L Zhu, and D E Lemons, and S Weinbaum
January 2009, American journal of physiology. Heart and circulatory physiology,
L Zhu, and D E Lemons, and S Weinbaum
January 1989, International angiology : a journal of the International Union of Angiology,
Copied contents to your clipboard!