Delayed IL-12 production by macrophages during Toxoplasma gondii infection is regulated by miR-187. 2020

Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun, 130062, China.

Toxoplasma gondii is an important zoonotic protozoan worldwide which infects most of warm-blooded mammals and birds, including human, and cause toxoplasmosis. As an intracellular parasite, T. gondii must evade host immune surveillance, such as IL-12 and IFN-γ, in order to survive and multiply in macrophages and other host cells. By delaying IL-12 secretion of host macrophages within 24 h after infection, T. gondii ensures not only self-survival but also the establishment of chronic infection of host cells. MicroRNA plays an important role in regulating gene transcription and translation. The mechanisms of IL-12 production during T. gondii infection are still unknown. Thus, understanding how the parasites manipulate IL-12 production by host macrophage is critical for the effective prevention and therapy of T. gondii infection. In the present study, regulation of delayed macrophage IL-12 production during T. gondii infection was explored. We found that the production of IL-12 after T. gondii infection was inhibited during the first 24 h and then resumed. The expression pattern of miR-187 production was consistent with the production pattern of IL-12 during T. gondii infection. The downregulation of miR-187 promoted Akt and P65 phosphorylation and delayed IL-12 production at late stage (after 24 h) of T. gondii infection. Dual-luciferase reporter assay indicated that MiR-187 targeted the NFKBIZ gene. Our results suggested that the delayed IL-12 production in mouse macrophages during T. gondii infection was regulated by miR-187.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014122 Toxoplasma A genus of protozoa parasitic to birds and mammals. T. gondii is one of the most common infectious pathogenic animal parasites of man. Toxoplasma gondii,Toxoplasma gondius,Toxoplasmas,gondius, Toxoplasma
D014123 Toxoplasmosis The acquired form of infection by Toxoplasma gondii in animals and man. Toxoplasma gondii Infection,Infection, Toxoplasma gondii
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D048868 Adaptor Proteins, Signal Transducing A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes Signal Transducing Adaptor Proteins
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
March 2004, Journal of immunology (Baltimore, Md. : 1950),
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
December 2016, Parasitology international,
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
November 2002, The Journal of experimental medicine,
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
June 2002, Journal of immunology (Baltimore, Md. : 1950),
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
January 2013, PloS one,
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
May 2008, Journal of immunology (Baltimore, Md. : 1950),
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
March 2005, Journal of immunology (Baltimore, Md. : 1950),
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
May 1999, Journal of immunology (Baltimore, Md. : 1950),
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
June 2014, International journal for parasitology,
Heng Jiang, and Tao Zhai, and Yanhui Yu, and Xin Li, and Pengtao Gong, and Xichen Zhang, and Guojiang Li, and Jianhua Li
September 1994, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!