Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes. 1979

S Ohki, and N Düzgünes

The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time. When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ greater than Ca2+ greater than Mg2+ and their critical concentrations were in upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h. This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The order and magnitude of divalent cation concentrations at which phosphatidylserine/phosphatidylcholine (1 : 1) and phosphatidylserine vesicle suspensions showed a large increase in turbidity were similar to those obtained in the above mentioned experiments.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property

Related Publications

S Ohki, and N Düzgünes
January 1979, Membrane biochemistry,
S Ohki, and N Düzgünes
August 1982, Proceedings of the National Academy of Sciences of the United States of America,
S Ohki, and N Düzgünes
December 1979, Experientia,
S Ohki, and N Düzgünes
April 1982, Biochemistry,
S Ohki, and N Düzgünes
February 2012, Journal of the American Chemical Society,
S Ohki, and N Düzgünes
December 1982, Chemistry and physics of lipids,
Copied contents to your clipboard!