Synthesis of (1,3,4-thiadiazol-2-yl)-acrylamide derivatives as potential antitumor agents against acute leukemia cells. 2020

Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.

A lead compound with the (1,3,4-thiadiazol-2-yl)-acrylamide scaffold was discovered to have significant cytotoxicity on several tumor cell lines in an in-house cell-based screening. A total of 60 derivative compounds were then synthesized and tested in a CCK-8 cell viability assay. Some of them exhibited improved cytotoxic activities. The most potent compounds had IC50 values of 1-5 μM on two acute leukemia tumor cell lines, i.e. RS4;11 and HL-60. Flow cytometry analysis of several active compounds and detection of caspase activation indicated that they induced caspase-dependent apoptosis. It was also encouraging to observe that these compounds did not have obvious cytotoxicity on normal cells, i.e. IC50 > 50 μM on HEK-293T cells. Although the molecular targets of this class of compound are yet to be revealed, our current results suggest that this class of compound represents a new possibility for developing drug candidates against acute leukemia.

UI MeSH Term Description Entries
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000178 Acrylamides Colorless, odorless crystals that are used extensively in research laboratories for the preparation of polyacrylamide gels for electrophoresis and in organic synthesis, and polymerization. Some of its polymers are used in sewage and wastewater treatment, permanent press fabrics, and as soil conditioning agents.
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute

Related Publications

Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
November 1990, Farmaco (Societa chimica italiana : 1989),
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
January 2014, Iranian journal of pharmaceutical research : IJPR,
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
October 2005, Bioorganic & medicinal chemistry letters,
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
October 2021, Bioorganic chemistry,
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
January 1990, Farmaco (Societa chimica italiana : 1989),
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
January 1979, Die Pharmazie,
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
January 2017, Iranian journal of pharmaceutical research : IJPR,
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
January 2014, Chemical & pharmaceutical bulletin,
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
January 2017, Yao xue xue bao = Acta pharmaceutica Sinica,
Qing Li, and Ran An, and Yaochun Xu, and Mi Zhou, and Yan Li, and Chun Guo, and Renxiao Wang
August 2014, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!