Boundaries of telomere conversion in Trypanosoma brucei. 1988

J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam.

Active genes for variant-specific surface glycoproteins (VSGs) reside in telomeric expression sites and may be replaced by other VSG genes via telomere conversions. The availability of a complete map of expression site 221 in variant 221a made it possible to determine the boundaries of such conversions and the sequences that are involved. We have analysed five trypanosome populations that arose from variant 221a through replacement of the 221 gene by another VSG gene. In each of these relapsed populations the telomere conversion ends at a different position in the expression site. In the relapsed population, 221aR3, the boundary was found in the coding region of an expression-site-associated gene (ESAG). This ESAG-2 codes for a potential 368-aa protein of unknown function; it contains a N-terminal signal peptide for mediating transfer to the endoplasmic reticulum and six potential N-glycosylation sites. It shares these structural features with the ESAG-1 protein encoded in the same expression site. ESAG-2 is a member of a large gene family which includes non-functional genes. In 221aR3, the partial conversion of ESAG-2 by an ESAG-2-like sequence has disrupted the open reading frame. The two ESAG-2 sequences are similar (92% identity) suggesting that sequence homology between telomeres provides the opportunity for gene conversion.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005785 Gene Conversion The asymmetrical segregation of genes during replication which leads to the production of non-reciprocal recombinant strands and the apparent conversion of one allele into another. Thus, e.g., the meiotic products of an Aa individual may be AAAa or aaaA instead of AAaa, i.e., the A allele has been converted into the a allele or vice versa. Polar Recombination,Polaron,Conversion, Gene,Conversions, Gene,Gene Conversions,Polar Recombinations,Polarons,Recombination, Polar,Recombinations, Polar
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei

Related Publications

J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
January 2008, Experimental parasitology,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
May 2000, The EMBO journal,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
January 2005, Nucleic acids research,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
January 2011, Journal of visualized experiments : JoVE,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
June 1989, Molecular and biochemical parasitology,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
June 1988, Molecular and biochemical parasitology,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
April 2013, Cell research,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
January 2004, Nucleic acids research,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
April 1990, The EMBO journal,
J M Kooter, and A J Winter, and C de Oliveira, and R Wagter, and P Borst
May 2009, Genes & development,
Copied contents to your clipboard!