Species-specific oligonucleotide probes for rRNA of Clostridium difficile and related species. 1988

K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
Medical Services, Durham Veterans Administration Medical Center, North Carolina 27705.

The large copy number of rRNA makes it an appealing target for oligonucleotide probes designed to identify microorganisms. Given that nucleotide sequences in rRNA are known to reflect phylogeny, species-specific rRNA probes should be feasible if the sequences found in closely related species are different. We sequenced portions of the 16S rRNA of three closely related clostridia found in the human colonic microflora: Clostridium bifermentans, C. sordellii, and C. difficile. The rRNAs of these three species showed 97 to 98% sequence similarity. Five oligonucleotide probes complementary to unique segments of the sequences were end labeled with 32P and hybridized on a nylon filter to the immobilized rRNA of each clostridium. Each probe efficiently hybridized only to the rRNA of the species to which it was directed. Complementary probes emitted a signal that exceeded by a factor of 100 to 1,000 the signal of probes that mismatched the target rRNA by 2 to 5 bases. Even a 1-base difference in rRNA sequence allowed a clear distinction between species. A systematic approach can efficiently yield taxon-specific oligonucleotide probes directed at rRNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide

Related Publications

K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
October 2006, Journal of microbiological methods,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
June 1987, Israel journal of medical sciences,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
February 1992, Letters in applied microbiology,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
July 1993, Research in veterinary science,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
November 2021, Systematic and applied microbiology,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
October 2004, Extremophiles : life under extreme conditions,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
May 2003, Applied and environmental microbiology,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
November 2018, Journal of microbiology and biotechnology,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
December 1993, Molecular and cellular probes,
K H Wilson, and R Blitchington, and B Hindenach, and R C Greene
December 1995, Canadian journal of microbiology,
Copied contents to your clipboard!