Human BST-2/tetherin inhibits Junin virus release from host cells and its inhibition is partially counteracted by viral nucleoprotein. 2020

Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.

Bone marrow stromal cell antigen-2 (BST-2), also known as tetherin, is an interferon-inducible membrane-associated protein. It effectively targets enveloped viruses at the release step of progeny viruses from host cells, thereby restricting the further spread of viral infection. Junin virus (JUNV) is a member of Arenaviridae, which causes Argentine haemorrhagic fever that is associated with a high rate of mortality. In this study, we examined the effect of human BST-2 on the replication and propagation of JUNV. The production of JUNV Z-mediated virus-like particles (VLPs) was significantly inhibited by over-expression of BST-2. Electron microscopy analysis revealed that BST-2 functions by forming a physical link that directly retains VLPs on the cell surface. Infection using JUNV showed that infectious JUNV production was moderately inhibited by endogenous or exogenous BST-2. We also observed that JUNV infection triggers an intense interferon response, causing an upregulation of BST-2, in infected cells. However, the expression of cell surface BST-2 was reduced upon infection. Furthermore, the expression of JUNV nucleoprotein (NP) partially recovered VLP production from BST-2 restriction, suggesting that the NP functions as an antagonist against antiviral effect of BST-2. We further showed that JUNV NP also rescued the production of Ebola virus VP40-mediated VLP from BST-2 restriction as a broad spectrum BST-2 antagonist. To our knowledge, this is the first report showing that an arenavirus protein counteracts the antiviral function of BST-2.

UI MeSH Term Description Entries
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072283 A549 Cells An immortalized cell line derived from human ADENOCARCINOMA, ALVEOLAR basal epithelial cells isolated from the lungs of a male patient in 1972. The cell line is positive for KERATIN, can synthesize LECITHIN, and contains high levels of POLYUNSATURATED FATTY ACIDS in its PLASMA MEMBRANE. It is used as a model for PULMONARY ALVEOLI function and virus infections, as a TRANSFECTION host, and for PRECLINICAL DRUG EVALUATION. A549 Cell Line,A549 Cell,A549 Cell Lines,Cell Line, A549,Cell Lines, A549,Cell, A549,Cells, A549
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D014758 Viral Core Proteins Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID. Core Proteins, Viral,Major Core Protein,Major Core Proteins, Viral,Adenovirus Core Protein VII,Core Protein V,Core Protein lambda 2,Influenza Virus Core Proteins,Major Core Protein lambda 1,Major Core Protein lambda-1,Major Core Protein sigma 2,Major Core Protein sigma-2,OVP 19,Oncornaviral Protein P19,P30 Core Proteins,Viral Protein P19,Virus Core Proteins,Core Protein, Major,Core Proteins, P30,Core Proteins, Virus,Protein P19, Oncornaviral,Protein P19, Viral,Protein, Major Core,Proteins, P30 Core,Proteins, Viral Core,Proteins, Virus Core
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
January 2015, Virology,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
June 2012, The Journal of biological chemistry,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
May 2011, Viruses,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
June 2013, The Journal of general virology,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
January 2012, PloS one,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
October 2010, Journal of virology,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
July 2012, Virology,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
September 2012, Hiroshima journal of medical sciences,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
March 2013, Virology,
Vahid Rajabali Zadeh, and Shuzo Urata, and Miako Sakaguchi, and Jiro Yasuda
June 2013, Molecular immunology,
Copied contents to your clipboard!