The Effects of Pre-Existing Antibodies on Live-Attenuated Viral Vaccines. 2020

Darren Z L Mok, and Kuan Rong Chan
Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.

Live-attenuated vaccines (LAVs) have achieved remarkable successes in controlling virus spread, as well as for other applications such as cancer immunotherapy. However, with rapid increases in international travel, globalization, geographic spread of viral vectors, and widespread use of vaccines, there is an increasing need to consider how pre-exposure to viruses which share similar antigenic regions can impact vaccine efficacy. Pre-existing antibodies, derived from either from maternal-fetal transmission, or by previous infection or vaccination, have been demonstrated to interfere with vaccine immunogenicity of measles, adenovirus, and influenza LAVs. Immune interference of LAVs can be caused by the formation of virus-antibody complexes that neutralize virus infection in antigen-presenting cells, or by the cross-linking of the B-cell receptor with the inhibitory receptor, FcgRIIB. On the other hand, pre-existing antibodies can augment flaviviral LAV efficacy such as that of dengue and yellow fever virus, especially when pre-existing antibodies are present at sub-neutralizing levels. The increased vaccine immunogenicity can be facilitated by antibody-dependent enhancement of virus infection, enhancing virus uptake in antigen-presenting cells, and robust induction of innate immune responses that promote vaccine immunogenicity. This review examines the literature on this topic and examines the circumstances where pre-existing antibodies can inhibit or enhance LAV efficacy. A better knowledge of the underlying mechanisms involved could allow us to better manage immunization in seropositive individuals and even identify possibilities that could allow us to exploit pre-existing antibodies to boost vaccine-induced responses for improved vaccine efficacy.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071497 Immunogenicity, Vaccine The capacity of VACCINES to stimulate the ADAPTIVE IMMUNE RESPONSE to produce antibodies and antigen-specific T-CELL responses. It is typically measured in vaccinated individuals in observational studies setting. Antigenicity, Vaccine,Vaccine Antigenicity,Vaccine Immunogenicity
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D014613 Vaccines, Attenuated Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity. Attenuated Vaccine,Vaccines, Live, Attenuated,Attenuated Vaccines,Vaccine, Attenuated
D014765 Viral Vaccines Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease. Viral Vaccine,Vaccine, Viral,Vaccines, Viral
D014777 Virus Diseases A general term for diseases caused by viruses. Viral Diseases,Viral Infections,Virus Infections,Disease, Viral,Disease, Virus,Diseases, Viral,Diseases, Virus,Infection, Viral,Infection, Virus,Infections, Viral,Infections, Virus,Viral Disease,Viral Infection,Virus Disease,Virus Infection
D014780 Viruses Minute infectious agents whose genomes are composed of DNA or RNA, but not both. They are characterized by a lack of independent metabolism and the inability to replicate outside living host cells. Animal Viruses,Zoophaginae,Animal Virus,Virus,Virus, Animal,Viruses, Animal

Related Publications

Darren Z L Mok, and Kuan Rong Chan
January 2014, Human vaccines & immunotherapeutics,
Darren Z L Mok, and Kuan Rong Chan
January 1987, Progress in medical virology. Fortschritte der medizinischen Virusforschung. Progres en virologie medicale,
Darren Z L Mok, and Kuan Rong Chan
October 2006, Expert review of vaccines,
Darren Z L Mok, and Kuan Rong Chan
January 2021, Frontiers in microbiology,
Darren Z L Mok, and Kuan Rong Chan
July 1964, Biken journal,
Darren Z L Mok, and Kuan Rong Chan
August 2006, Expert review of vaccines,
Copied contents to your clipboard!