Calcitonin gene-related peptide evokes fast and slow depolarizing responses in guinea pig coeliac neurons. 1988

N J Dun, and N Mo
Department of Pharmacology, Loyola University Stritch School of Medicine, Maywood, IL 60153.

Pressure application of calcitonin gene-related peptide (CGRP) evoked in a population of coeliac neurons three types of response: a fast, a slow and a biphasic depolarization consisting of the first two responses in sequence. The fast and slow depolarization exhibited distinct electrophysiological and pharmacological characteristics, suggesting that these two responses may be mediated by separate CGRP receptors. Moreover, our results show that CGRP is one of the few peptides known to date that cause a fast, sodium-sensitive depolarization.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D014403 Tubocurarine A neuromuscular blocker and active ingredient in CURARE; plant based alkaloid of Menispermaceae. Tubocurare,Tubocurarine Chloride,d-Tubocurare,d-Tubocurarine
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide

Related Publications

N J Dun, and N Mo
December 1987, Journal of the autonomic nervous system,
N J Dun, and N Mo
January 2004, Lin chuang er bi yan hou ke za zhi = Journal of clinical otorhinolaryngology,
N J Dun, and N Mo
November 1996, The American journal of physiology,
N J Dun, and N Mo
August 1991, Canadian journal of physiology and pharmacology,
N J Dun, and N Mo
November 1997, Acta oto-laryngologica,
N J Dun, and N Mo
November 1989, Japanese journal of pharmacology,
N J Dun, and N Mo
April 1986, The American journal of physiology,
N J Dun, and N Mo
February 2000, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!