Breakage of Hydrophobic Contacts Limits the Rate of Passive Lipid Exchange between Membranes. 2020

Julia R Rogers, and Phillip L Geissler
Department of Chemistry, University of California, Berkeley, California 94720, United States.

The maintenance of heterogeneous lipid compositions among cellular membranes is key to biological function. Yet, even the simplest process that could be responsible for maintaining proper lipid distributions, passive lipid exchange of individual molecules between membranes, has eluded a detailed understanding, due in part to inconsistencies between experimental findings and molecular simulations. We resolve these discrepancies by discovering the reaction coordinate for passive lipid exchange, which enables a complete biophysical characterization of the rate-limiting step for lipid exchange. Our approach to identify the reaction coordinate capitalizes on our ability to harvest over 1000 unbiased trajectories of lipid insertion, an elementary step of passive lipid transport, using all-atom and coarse-grained molecular dynamics simulations. We find that the reaction coordinate measures the formation and breakage of hydrophobic contacts between the membrane and exchanging lipid. Consistent with experiments, free energy profiles as a function of our reaction coordinate exhibit a substantial barrier for insertion. In contrast, lipid insertion was predicted to be a barrier-less process by previous computational studies, which incorrectly presumed the reaction coordinate to be the displacement of the exchanging lipid from the membrane. Utilizing our newfound knowledge of the reaction coordinate, we formulate an expression for the lipid exchange rate to enable a quantitative comparison with experiments. Overall, our results indicate that the breakage of hydrophobic contacts is rate limiting for passive lipid exchange and provide a foundation to understand the catalytic function of lipid transfer proteins.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D056004 Molecular Dynamics Simulation A computer simulation developed to study the motion of molecules over a period of time. Molecular Dynamics Simulations,Molecular Dynamics,Dynamic, Molecular,Dynamics Simulation, Molecular,Dynamics Simulations, Molecular,Dynamics, Molecular,Molecular Dynamic,Simulation, Molecular Dynamics,Simulations, Molecular Dynamics
D057927 Hydrophobic and Hydrophilic Interactions The thermodynamic interaction between a substance and WATER. Hydrophilic Interactions,Hydrophilic and Hydrophobic Interactions,Hydrophilicity,Hydrophobic Interactions,Hydrophobicity,Hydrophilic Interaction,Hydrophilicities,Hydrophobic Interaction,Hydrophobicities,Interaction, Hydrophilic,Interaction, Hydrophobic,Interactions, Hydrophilic,Interactions, Hydrophobic
D019277 Entropy The measure of that part of the heat or energy of a system which is not available to perform work. Entropy increases in all natural (spontaneous and irreversible) processes. (From Dorland, 28th ed) Entropies

Related Publications

Julia R Rogers, and Phillip L Geissler
December 1984, Biophysical journal,
Julia R Rogers, and Phillip L Geissler
January 2022, Biophysical journal,
Julia R Rogers, and Phillip L Geissler
April 1974, Laboratory investigation; a journal of technical methods and pathology,
Julia R Rogers, and Phillip L Geissler
January 1975, The Journal of membrane biology,
Julia R Rogers, and Phillip L Geissler
January 1990, Methods in enzymology,
Julia R Rogers, and Phillip L Geissler
January 1975, Biofizika,
Julia R Rogers, and Phillip L Geissler
August 2022, Journal of the American Chemical Society,
Julia R Rogers, and Phillip L Geissler
January 1995, Annals of biomedical engineering,
Julia R Rogers, and Phillip L Geissler
September 2012, Colloids and surfaces. B, Biointerfaces,
Copied contents to your clipboard!