Thrombospondin-1 Plays an Essential Role in Yes-Associated Protein Nuclear Translocation during the Early Phase of Trypanosoma cruzi Infection in Heart Endothelial Cells. 2020

Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA.

The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease. This neglected tropical disease causes severe morbidity and mortality in endemic regions. About 30% of T. cruzi infected individuals will present with cardiac complications. Invasive trypomastigotes released from infected cells can be carried in the vascular endothelial system to infect neighboring and distant cells. During the process of cellular infection, the parasite induces host cells, to increase the levels of host thrombospondin-1 (TSP-1), to facilitate the process of infection. TSP-1 plays important roles in the functioning of vascular cells, including vascular endothelial cells with important implications in cardiovascular health. Many signal transduction pathways, including the yes-associated protein 1 (YAP)/transcriptional coactivator, with PDZ-binding motif (TAZ) signaling, which are upstream of TSP-1, have been linked to the pathophysiology of heart damage. The molecular mechanisms by which T. cruzi signals, and eventually infects, heart endothelial cells remain unknown. To evaluate the importance of TSP-1 expression in heart endothelial cells during the process of T. cruzi infection, we exposed heart endothelial cells prepared from Wild Type and TSP-1 Knockout mouse to invasive T. cruzi trypomastigotes at multiple time points, and evaluated changes in the hippo signaling cascade using immunoblotting and immunofluorescence assays. We found that the parasite turned off the hippo signaling pathway in TSP-1KO heart endothelial cells. The levels of SAV1 and MOB1A increased to a maximum of 2.70 ± 0.23 and 5.74 ± 1.45-fold at 3 and 6 h, respectively, in TSP-1KO mouse heart endothelial cells (MHEC), compared to WT MHEC, following a parasite challenge. This was accompanied by a significant continuous increase in the nuclear translocation of downstream effector molecule YAP, to a maximum mean nuclear fluorescence intensity of 10.14 ± 0.40 at 6 h, compared to wild type cells. Furthermore, we found that increased nuclear translocated YAP significantly colocalized with the transcription co-activator molecule pan-TEAD, with a maximum Pearson's correlation coefficient of 0.51 ± 0.06 at 6 h, compared to YAP-Pan-TEAD colocalization in the WT MHEC, which decreased significantly, with a minimum Pearson's correlation coefficient of 0.30 ± 0.01 at 6 h. Our data indicate that, during the early phase of infection, upregulated TSP-1 is essential for the regulation of the hippo signaling pathway. These studies advance our understanding of the molecular interactions occurring between heart endothelial cells and T. cruzi, in the presence and absence of TSP-1, providing insights into processes linked to parasite dissemination and pathogenesis.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014349 Trypanosoma cruzi The agent of South American trypanosomiasis or CHAGAS DISEASE. Its vertebrate hosts are man and various domestic and wild animals. Insects of several species are vectors. Trypanosoma cruzus,cruzi, Trypanosoma
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear
D015800 Protozoan Proteins Proteins found in any species of protozoan. Proteins, Protozoan
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D048868 Adaptor Proteins, Signal Transducing A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes Signal Transducing Adaptor Proteins

Related Publications

Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
January 2001, Biochemistry,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
November 1993, Biochemical and biophysical research communications,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
April 2006, FEBS letters,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
January 2023, International review of cell and molecular biology,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
December 2019, Virulence,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
September 2018, PLoS neglected tropical diseases,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
November 1995, The international journal of biochemistry & cell biology,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
December 1996, Molecular and cellular biochemistry,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
January 2012, PloS one,
Ashutosh Arun, and Kayla J Rayford, and Ayorinde Cooley, and Girish Rachakonda, and Fernando Villalta, and Siddharth Pratap, and Maria F Lima, and Nader Sheibani, and Pius N Nde
April 2017, Experimental gerontology,
Copied contents to your clipboard!