Molecular events associated with induction of arginase in Saccharomyces cerevisiae. 1977

J Bossinger, and T G Cooper

Arginase, the enzyme responsible for arginine degradation in Saccharomyces cerevisiae, is an inducible protein whose inhibition of ornithine carbamoyl-transferase has been studied extensively. Mutant strains defective in the normal regulation of arginase production have also been isolated. However, in spite of these studies, the macromolecular biosynthetic events involved in production of arginase remain obscure. We have, therefore, studied the requirements of arginase induction. We observed that: (i) 4 min elapsed between the addition of inducer (homoarginine) and the appearance of arginase activity at 30 degrees C; (ii) induction required ribonucleic acid synthesis and a functional rna1 gene product; and (iii) production of arginase-specific synthetic capacity occurred in the absence of protein synthesis but could be expressed only when protein synthesis was not inhibited. Termination of induction by inducer removal, addition of the ribonucleic acid synthesis inhibitor lomofungin, or resuspension of a culture of organisms containing temperature-sensitive rna1 gene products in a medium at 35 degrees C resulted in loss of ability for continued arginase synthesis with half-lives of 5.5, 3.8, and 4.5 min, respectively. These and other recently published data suggest that a variety of inducible or repressible proteins responding rapidly to the environment may be derived from labile synthetic capacities, whereas constitutively produced proteins needed continuously throughout the cell cycle may be derived from synthetic capacities that are significantly more stable.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010619 Phenazines
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006709 Homoarginine
D001119 Arginase A ureahydrolase that catalyzes the hydrolysis of arginine or canavanine to yield L-ornithine (ORNITHINE) and urea. Deficiency of this enzyme causes HYPERARGININEMIA. EC 3.5.3.1. Arginase A1,Arginase A4,Hepatic Proliferation Inhibitor,Liver Immunoregulatory Protein,Liver-Derived Inhibitory Protein,Liver-Derived Lymphocyte Proliferation Inhibiting Protein,Immunoregulatory Protein, Liver,Inhibitor, Hepatic Proliferation,Inhibitory Protein, Liver-Derived,Liver Derived Inhibitory Protein,Liver Derived Lymphocyte Proliferation Inhibiting Protein,Proliferation Inhibitor, Hepatic,Protein, Liver Immunoregulatory,Protein, Liver-Derived Inhibitory
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

J Bossinger, and T G Cooper
September 1973, The Journal of biological chemistry,
J Bossinger, and T G Cooper
January 1976, Biochimie,
J Bossinger, and T G Cooper
January 1986, Antonie van Leeuwenhoek,
J Bossinger, and T G Cooper
July 1976, Journal of molecular biology,
J Bossinger, and T G Cooper
September 1983, Journal of bacteriology,
J Bossinger, and T G Cooper
January 1990, The Journal of biological chemistry,
J Bossinger, and T G Cooper
January 1976, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!