Nitrogenase of Klebsiella pneumoniae. Water proton NMR relaxation studies on the binding of divalent metal ions and nucleotides to the iron protein. 1977

E O Bishop, and M D Lambert, and D Orchard, and B E Smith

Interactions between the iron protein, Kp2, of nitrogenase manganese ions, magnesium ions, and the nucleotides ATP or ADP, have been studied in aqueous solution by monitoring the water proton NMR relaxation rate enhancement caused by Mn2+. Binding of Mn2+ to a molecule of Kp2 occurs at four sites, indistinguishable within experimental error, having a Kd = 350 +/- 50 micron. The Mn2+ - Kp2 complex has a low characteristic enhancement (epsilonb = 6 +/- 0.5). All four sites can alternatively bind Mg2+, not necessarily with the same dissociation constant, but with a mean Kd = 1.7 +/- 0.3 mM. Ternary complexes with the configuration EMS or (formula: see text) are formed between Kp2, Mn2+ and nucleotide (ATP or ADP). The ternary complexes with Mg2+ in place of Mn2+ probably have the latter configuration. A novel treatment of enhancement data (a 'high metal' approximation) is given.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007711 Klebsiella pneumoniae Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans. Bacillus pneumoniae,Bacterium pneumoniae crouposae,Hyalococcus pneumoniae,Klebsiella pneumoniae aerogenes,Klebsiella rhinoscleromatis
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations

Related Publications

E O Bishop, and M D Lambert, and D Orchard, and B E Smith
January 1982, Biopolymers,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
September 1971, Proceedings of the National Academy of Sciences of the United States of America,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
July 1977, Journal of the American Chemical Society,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
November 1992, The Journal of biological chemistry,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
January 1977, Journal of the American Chemical Society,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
March 1981, The Journal of biological chemistry,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
January 1982, Biopolymers,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
May 1992, The Journal of biological chemistry,
E O Bishop, and M D Lambert, and D Orchard, and B E Smith
September 1998, The Biochemical journal,
Copied contents to your clipboard!