Nucleotide binding by the nitrogenase Fe protein: a 31P NMR study of ADP and ATP interactions with the Fe protein of Klebsiella pneumoniae. 1998

R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
The Nitrogen Fixation Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K. rwmiller@top.monad.net

Investigation of the interaction of MgADP- and MgATP2- with the Fe protein of Klebsiella pneumoniae nitrogenase by 31P NMR showed that the adenine nucleotides are reversibly bound in slow exchange with free nucleotides. Dissociation of the MgADP--Fe protein complex was slow enough to enable its isolation by gel filtration, thus permitting the assignment of resonances to bound nucleotides. Spectra of ADP bound to Kp2 were similar to spectra of ADP bound to the myosin motor domain. Oxidative inactivation of a Kp2-MgADP- complex with excess ferricyanide ion eliminated exchange between bound and free ADP, indicating that the intact iron sulphur cluster, located 20 A from the binding sites, is required for the reversible binding of MgADP-. A change in conformation on controlled oxidation of Kp2 with indigocarmine increased the chemical shift of the beta phosphate resonance of bound MgADP-. Both oxidized and reduced conformers were observed transiently in the absence of dithionite. The 31P resonances of both the beta and gamma phosphates of bound MgATP2- indicated major changes in environment and labilization of both groups on binding to the Fe protein. Highly purified Kp2 slowly hydrolysed ATP, resulting in mixtures of bound nucleotides. Partial occupation of Kp2 MgATP2--binding sites (N=1.9+/-0.2, Kd=145 microM) in concentrated protein solutions was demonstrated by flow dialysis. Scatchard plots of data for bound and free ligand obtained after equilibration with Kp2 were linear and no co-operative interactions were detected. We conclude that MgADP- stabilizes the oxidized Fe protein conformer and this conformation in turn triggers the dissociation of the Fe protein from the MoFe protein in the rate-limiting step of the overall process of dinitrogen reduction.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007711 Klebsiella pneumoniae Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans. Bacillus pneumoniae,Bacterium pneumoniae crouposae,Hyalococcus pneumoniae,Klebsiella pneumoniae aerogenes,Klebsiella rhinoscleromatis
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
May 2008, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
January 1970, Biochimica et biophysica acta,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
March 1981, The Journal of biological chemistry,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
June 1973, Biochimica et biophysica acta,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
November 1980, FEBS letters,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
August 1970, Canadian journal of microbiology,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
June 1987, The Journal of biological chemistry,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
September 1983, Archives of biochemistry and biophysics,
R W Miller, and R R Eady, and C Gormal, and S A Fairhurst, and B E Smith
June 1977, Biochimica et biophysica acta,
Copied contents to your clipboard!