Redox properties and rate constants in free-radical mediated damage. 1987

P Wardman, and E D Clarke
Gray Laboratory of the Cancer Research Campaign, Mount Vernon Hospital, Northwood, Middlesex, UK.

The interpretation of quantitative relationships between chemical properties and biological effects requires great caution if erroneous conclusions are to be avoided. A knowledge of intracellular concentrations is especially desirable. Since many chemical properties are themselves interrelated, reliable identification of critical reactions may be difficult. Free radicals often react by electron transfer or radical addition, and there are quantitative redox dependencies characteristic of both reaction types. Absolute rate constants, and equilibrium constants, of electron transfer reactions may vary greatly according to the dielectric properties of the reaction environment.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

P Wardman, and E D Clarke
June 2013, Antioxidants & redox signaling,
P Wardman, and E D Clarke
January 2000, Progress in retinal and eye research,
P Wardman, and E D Clarke
January 1989, Microcirculation, endothelium, and lymphatics,
P Wardman, and E D Clarke
July 1989, The Biochemical journal,
P Wardman, and E D Clarke
June 1987, The British journal of cancer. Supplement,
P Wardman, and E D Clarke
January 1990, Experimental lung research,
P Wardman, and E D Clarke
May 2002, Journal of pineal research,
P Wardman, and E D Clarke
December 2004, Aging cell,
P Wardman, and E D Clarke
January 1991, Basic life sciences,
Copied contents to your clipboard!