[Gut microbiota and depression : Pathophysiology of depression: hypothalamic-pituitary-adrenal axis and microbiota-gut-brain axis]. 2020

J M Lima-Ojeda, and R Rupprecht, and T C Baghai
Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Regensburg, Universitätsstraße 84, 93053, Regensburg, Deutschland. Juan.LimaOjeda@medbo.de.

Depression is a chronic disease with a complex multifactorial and still not fully clarified etiology. Due to new insights after recent investigations of the microbiota-gut-brain (MGB) axis, a relationship between a disrupted gut microbiota composition and the probability to develop a depression can be assumed. This hypothesis is supported by evidence that there is a strong communication between gut microbiota and the central nervous system (CNS) and that this communication is mediated through the MGB axis. Apparently, this bidirectional axis can be modulated by environmental factors, such as stress, pharmaceuticals (in particular antibiotics) and dietary habits. Moreover, modulation of this axis can also result in mood alterations. As the hypothalamic-pituitary-adrenal (HPA) axis is a key element regulating the MGB axis and is also related to the pathophysiology of depression, it is important to understand the relationship between both biological systems. An English language literature search was conducted using the biomedical database PubMed. We used combined terms, such as "gut microbiota", "depression", "hypothalamic-pituitary-adrenal axis" or "microbiota-gut-brain axis". The current literature supports the idea that the MGB axis has an impact on the risk to develop depression and that stress modulation through the HPA axis plays a key role in this context.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003863 Depression Depressive states usually of moderate intensity in contrast with MAJOR DEPRESSIVE DISORDER present in neurotic and psychotic disorders. Depressive Symptoms,Emotional Depression,Depression, Emotional,Depressive Symptom,Symptom, Depressive
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal
D064307 Microbiota The full collection of microbes (bacteria, fungi, virus, etc.) that naturally exist within a particular biological niche such as an organism, soil, a body of water, etc. Human Microbiome,Microbiome,Microbiome, Human,Microbial Community,Microbial Community Composition,Microbial Community Structure,Community Composition, Microbial,Community Structure, Microbial,Community, Microbial,Composition, Microbial Community,Human Microbiomes,Microbial Communities,Microbial Community Compositions,Microbial Community Structures,Microbiomes,Microbiotas

Related Publications

J M Lima-Ojeda, and R Rupprecht, and T C Baghai
January 2023, Frontiers in endocrinology,
J M Lima-Ojeda, and R Rupprecht, and T C Baghai
June 1998, The Psychiatric clinics of North America,
J M Lima-Ojeda, and R Rupprecht, and T C Baghai
January 1987, Advances in biochemical psychopharmacology,
J M Lima-Ojeda, and R Rupprecht, and T C Baghai
June 2015, Neuroscience bulletin,
J M Lima-Ojeda, and R Rupprecht, and T C Baghai
October 1985, The British journal of psychiatry : the journal of mental science,
J M Lima-Ojeda, and R Rupprecht, and T C Baghai
October 2010, Psychiatry and clinical neurosciences,
J M Lima-Ojeda, and R Rupprecht, and T C Baghai
September 1979, Lancet (London, England),
J M Lima-Ojeda, and R Rupprecht, and T C Baghai
August 1994, Respiratory medicine,
Copied contents to your clipboard!