Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression. 1998

L V Scott, and T G Dinan
Department of Psychiatry, Trinity College Medical School, St. James' Hospital, Dublin, Ireland.

The role of arginine vasopressin (AVPNP) in the control of adrenocorticotropic hormone (ACTH) secretion is explored, and in particular, its involvement in various stress response paradigms which may be of relevance in our understanding of the pathophysiology of depression. VP is released from two sites in the hypothalamus; the parvicellular division of the paraventricular nucleus (PVN), where corticotropin releasing hormone (CRH) is also formed, and from the magnocellular neurons of the supraoptic nucleus (SON) and the PVN. The intricate interaction with CRH, the other main ACTH secretagogue, and with glucocorticoids, the inhibitory feedback component of hypothalamic-pituitary-adrenal-axis (HPA) activity, is outlined. That VP plays an important role in the stress response is now beyond doubt. Examination of the impact of psychological stressors on the differential expression of VP and CRH at a hypothalamic and pituitary level has been facilitated by advances in molecular biological techniques. Of importance has been the cloning of the V1b receptor gene, the receptor at which AVP is active in the anterior pituitary. Chronic stress paradigms, associated with HPA hyperresponsiveness, and ACTH release following a novel superimposed stress, have been found with relative consistency to show a shift in the CRH:AVP ratio. This may relate to differing feedback sensitivity of AVP to glucocorticoid feedback restraint and the greater responsivity of AVP over CRH to chronic stimulatory stress input. Evidence for functionally distinct pools of ACTH releasing corticotropes, and the finding that AVP levels more closely correlate with ACTH levels than do CRH levels, suggest a more dynamic role for AVP in activity of the stress axis, and a primarily permissive function for CRH. The renewed interest in the role of VP in HPA axis activity may have important implications for furthering our understanding of psychiatric conditions such as depression, where significant dysregulation of this axis is seen. Elevated baseline cortisol, dexamethasone non-suppression and blunted CRH/ACTH release have been consistently documented. The possible contribution of VP to this hyperactivity, despite its known synergy with CRH, has been largely neglected. In animal models there is clear evidence that chronic psychological stressors increase the ratio of AVP to CRH production. Psychosocial stressors are intrinsically linked with depressive illness. The finding of elevated levels of AVP in postmortem studies of depressives and the lowering of CSF AVP levels by antidepressants, raises the question of the precise role of AVP in the overactivity of the HPA in depression, a finding that is currently attributed to overdrive of its HPA regulatory companion, CRH.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003863 Depression Depressive states usually of moderate intensity in contrast with MAJOR DEPRESSIVE DISORDER present in neurotic and psychotic disorders. Depressive Symptoms,Emotional Depression,Depression, Emotional,Depressive Symptom,Symptom, Depressive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

L V Scott, and T G Dinan
June 2015, Neuroscience bulletin,
L V Scott, and T G Dinan
October 1985, The British journal of psychiatry : the journal of mental science,
L V Scott, and T G Dinan
January 1996, Life sciences,
L V Scott, and T G Dinan
November 1992, Biological psychiatry,
L V Scott, and T G Dinan
January 1987, Advances in biochemical psychopharmacology,
L V Scott, and T G Dinan
January 2009, Neuroimmunomodulation,
L V Scott, and T G Dinan
April 1985, Archives of general psychiatry,
L V Scott, and T G Dinan
August 2002, Psychological medicine,
Copied contents to your clipboard!