Isotonic water transport in secretory epithelia. 1977

C H Swanson

The model proposed by Diamond and Bossert [1] for isotonic water transport has received wide acceptance in recent years. It assumes that the local driving force for water transport is a standing osmotic gradient produced in the lateral intercellular spaces of the epithelial cell layer by active solute transport. While this model is based on work done in absorptive epithelia where the closed to open direction of the lateral space and the direction of net transport are the same, it has been proposed that the lateral spaces could also serve as the site of the local osmotic gradients for water transport in secretory epithelia, where the closed to open direction of the lateral space and net transport are opposed, by actively transporting solute out of the space rather than into it. Operation in the backward direction, however, requires a lower than ambient hydrostatic pressure within the lateral space which would seem more likely to cause the space to collapse with loss of function. On the other hand, most secretory epithelia are characterized by transport into a restricted ductal system which is similar to the lateral intercellular space in the absorptive epithelia in that its closed to open direction is the same as that of net transport. In vitro micropuncture studies on the exocrine pancreas of the rabbit indicate the presence of a small but statistically significant increase in juice osmolality, 6 mOsm/kg H(2)O, at the site of electrolyte and water secretion in the smallest extralobular ducts with secretin stimulation which suggests that the ductal system in the secretory epithelia rather than the lateral intercellular space is the site of the local osmotic gradients responsible for isotonic water transport.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010183 Pancreatic Ducts Ducts that collect PANCREATIC JUICE from the PANCREAS and supply it to the DUODENUM. Duct of Santorini,Duct of Wirsung,Duodenal Papilla, Minor,Wirsung's Duct,Accessory Pancreatic Duct,Accessory Pancreatic Duct of Santorini,Main Pancreatic Duct,Santorini's Duct,Accessory Pancreatic Ducts,Duct, Accessory Pancreatic,Duct, Main Pancreatic,Duct, Pancreatic,Duct, Santorini's,Duct, Wirsung's,Ducts, Pancreatic,Main Pancreatic Ducts,Minor Duodenal Papilla,Minor Duodenal Papillas,Pancreatic Duct,Pancreatic Duct, Accessory,Pancreatic Duct, Main,Pancreatic Ducts, Accessory,Papilla, Minor Duodenal,Santorini Duct,Wirsung Duct,Wirsungs Duct
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

C H Swanson
January 1989, Annals of the New York Academy of Sciences,
C H Swanson
September 1964, The Journal of general physiology,
C H Swanson
July 1989, Acta physiologica Scandinavica,
C H Swanson
February 1979, Federation proceedings,
C H Swanson
May 1983, The American review of respiratory disease,
C H Swanson
January 2000, Reviews of physiology, biochemistry and pharmacology,
C H Swanson
January 1965, Harvey lectures,
C H Swanson
February 2002, Gastroenterology,
Copied contents to your clipboard!