Mechanism of isotonic water transport in glands. 1989

H H Ussing, and K Eskesen
Institute of Biological Chemistry A, University of Copenhagen, Denmark.

Since water and electrolytes pass cell membranes via separate channels, there can be no interactions in the membranes, and osmotic interactions between water and solutes can be expressed as the product of solute flux, frictional coefficient of solute, and length of pathway. It becomes clear that isotonic transport via a cell is impossible. In glands, where cation-selective junctions impede anion flux between the cells, isotonic water transport is only possible if sodium, after having passed the junction, is reabsorbed in the acinus and returned to the serosal side. Thus it can be recycled via the cation-selective junction and exert its drag on water more than once. This hypothesis was tested on frog skin glands. Skins were mounted in flux chambers with identical Ringer solutions on both sides. Na channels of the principal cells were closed with amiloride in the outside solution, and secretion stimulated with noradrenaline in the inside solution. Influx and efflux of Na, K and Br (used as tracer for Cl) were measured on paired half-skins during the constant-secretion phase. Flux ratios for both Na and K were higher than expected for electrodiffusion, indicating outgoing solvent drag. Flux ratios for K were much higher than those for Na. This is an agreement with the concept that Na is reabsorbed in the acinus and K is not. Two independent expressions for the degree of sodium recycling are developed. Under all experimental conditions these expressions give values for the recycling which are in good agreement.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D001967 Bromine Radioisotopes Unstable isotopes of bromine that decay or disintegrate emitting radiation. Br atoms with atomic weights 74-78, 80, and 82-90 are radioactive bromine isotopes. Radioisotopes, Bromine
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H H Ussing, and K Eskesen
September 1964, The Journal of general physiology,
H H Ussing, and K Eskesen
January 1977, The Yale journal of biology and medicine,
H H Ussing, and K Eskesen
July 1996, The Journal of membrane biology,
H H Ussing, and K Eskesen
January 1965, Symposia of the Society for Experimental Biology,
H H Ussing, and K Eskesen
November 1976, Scandinavian journal of clinical and laboratory investigation,
H H Ussing, and K Eskesen
August 1997, Biology of the cell,
H H Ussing, and K Eskesen
January 1993, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists,
H H Ussing, and K Eskesen
December 1965, The American journal of physiology,
H H Ussing, and K Eskesen
March 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
H H Ussing, and K Eskesen
February 1913, Buffalo medical journal,
Copied contents to your clipboard!