Caveolin-1 influences epithelial collective cell migration via FMNL2 formin. 2021

Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia.

BACKGROUND Epithelial collective cell migration requires the intrinsic locomotor activity of cells to be coordinated across populations. This coordination is governed by the presence of cell-cell adhesions as well as the cooperative behaviour of cells within the monolayer. RESULTS Here, we report a role for Caveolin-1 (CAV1) in epithelial collective cell migration. CAV1 depletion reduced the migratory behaviour of AML12 liver epithelial cells when grown as monolayers, but not as individual cells. This suggested that CAV1 is a component of the process by which multicellular collectivity regulates epithelial motility. The correlation length for migration velocity was increased by CAV1 RNAi, a possible sign of epithelial jamming. However, CAV1 RNAi reduced migration, even when monolayers were allowed to migrate into unconfined spaces. The migratory defect was ameliorated by simultaneous depletion of the FMNL2 formin, whose cortical recruitment is increased in CAV1 RNAi cells. CONCLUSIONS We therefore suggest that CAV1 modulates intraepithelial motility by controlling the cortical availability of FMNL2. CONCLUSIONS Although epithelial collective cell migration has been observed in multiple contexts both in vivo and in vitro, the inherent coupling and coordination of activity between cells within the monolayer remain incompletely understood. Our study highlights a role for CAV1 in regulating intraepithelial motility, an effect that involves the formin FMNL2.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000080865 Formins A family of multidomain microfilament proteins associated with ACTIN FILAMENTS. They generally have multiple Formin-Homology domains (e.g., FH2 domain) and additionally have a RhoGTPase-binding domain and a diaphanous inhibitory domain. Formins and homologs are involved in actin reorganization. DIAPH Protein 1,DIAPH Protein 2,DIAPH Proteins,Diaphanous-Related Formin Homology Proteins,Diaphanous-Related Formins,FMN Protein 1,FMN Protein 2,FMN Proteins,Formin,Formin 1 Protein,Formin 2 Protein,Formin Homology Proteins,Diaphanous Related Formin Homology Proteins,Diaphanous Related Formins,Formins, Diaphanous-Related
D051242 Caveolin 1 A tyrosine phosphoprotein that plays an essential role in CAVEOLAE formation. It binds CHOLESTEROL and is involved in LIPIDS transport, membrane traffic, and SIGNAL TRANSDUCTION. Caveolin-1,VIP21 Protein,Vesicular Integral Membrane Protein 21 kDa,alpha-Caveolin,beta-Caveolin,alpha Caveolin,beta Caveolin
D055785 Gene Knockdown Techniques The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES. Gene Knock Down Techniques,Gene Knock Down,Gene Knock-Down,Gene Knock-Down Techniques,Gene Knockdown,Gene Knock Downs,Gene Knock-Down Technique,Gene Knock-Downs,Gene Knockdown Technique,Gene Knockdowns,Knock Down, Gene,Knock Downs, Gene,Knock-Down Technique, Gene,Knock-Down Techniques, Gene,Knock-Down, Gene,Knock-Downs, Gene,Knockdown Technique, Gene,Knockdown Techniques, Gene,Knockdown, Gene,Knockdowns, Gene,Technique, Gene Knock-Down,Technique, Gene Knockdown,Techniques, Gene Knock-Down,Techniques, Gene Knockdown
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell

Related Publications

Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
June 2021, Journal of biomedical nanotechnology,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
July 2010, BMC cell biology,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
October 2015, Physical review letters,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
February 2014, Current molecular medicine,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
October 2020, Journal of cellular physiology,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
February 2019, ACS nano,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
June 2012, Current genomics,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
January 2012, PloS one,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
October 2013, Cellular and molecular life sciences : CMLS,
Hiroko Katsuno-Kambe, and Robert G Parton, and Alpha S Yap, and Jessica L Teo
March 2015, Molecular cancer research : MCR,
Copied contents to your clipboard!