Extracellular matrix fibers containing fibronectin and basement membrane heparan sulfate proteoglycan coalign with focal contacts and microfilament bundles in stationary fibroblasts. 1987

I I Singer, and S Scott, and D W Kawka, and J R Hassell
Department of Molecular Biology and Biochemistry, Merck Co., Inc., Rahway, New Jersey 07065.

Double-label immunofluorescence microscopy and immunoelectron microscopy were performed on stationary cultures of Nil 8 fibroblasts to determine if fibronectin and basement membrane heparan sulfate proteoglycans play coordinated roles in cell-to-substrate adhesion. Relationships between subcellular matrix fibers containing fibronectin plus proteoglycan, and focal contacts associated with microfilament bundles, were studied simultaneously using interference reflection microscopy, differential interference contrast microscopy, and immunofluorescence microscopy. Cells maintained in 0.3% FBS were doubly stained with monospecific anti-fibronectin IgG and antibodies against a basement membrane proteoglycan purified from the EHS (Engelbreth-Holm-Swarm) tumor. Coincident patterns of fibronectin and proteoglycan-containing fibers were found to codistribute with focal contacts and microfilament bundles in both early (6-h) and late (24-h) cultures. The early cells showed doubly-stained fibers colinear with substrate adhesion sites in 43% of the sample, while 100% of the later cells exhibited these coaligned matrix-cytoskeletal attachment complexes. Immunoelectron microscopy showed that both of these antigens were situated in the same type of extracellular matrix fiber that appeared to be loosely associated with the cell surface membrane. We hypothesize that the appearance of proteoglycan in subcellular matrix fibers of these fibroblasts might stabilize fibronectin-containing cell-to-substrate contacts.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin

Related Publications

I I Singer, and S Scott, and D W Kawka, and J R Hassell
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
July 1980, Proceedings of the National Academy of Sciences of the United States of America,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
February 1982, The Journal of cell biology,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
January 1993, Virchows Archiv. A, Pathological anatomy and histopathology,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
July 1993, The Journal of cell biology,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
September 1998, The Journal of biological chemistry,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
February 1987, Biochemistry,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
March 1995, Hypertension (Dallas, Tex. : 1979),
I I Singer, and S Scott, and D W Kawka, and J R Hassell
March 1988, The American journal of anatomy,
I I Singer, and S Scott, and D W Kawka, and J R Hassell
April 1985, The EMBO journal,
Copied contents to your clipboard!