Enzymatic Analysis of Yeast Cell Wall-Resident GAPDH and Its Secretion. 2020

Michael J Cohen, and Brianne Philippe, and Peter N Lipke
Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA.

In yeast, many proteins are found in both the cytoplasmic and extracellular compartments, and consequently it can be difficult to distinguish nonconventional secretion from cellular leakage. Therefore, we monitored the extracellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity of intact cells as a specific marker for nonconventional secretion. Extracellular GAPDH activity was proportional to the number of cells assayed, increased with incubation time, and was dependent on added substrates. Preincubation of intact cells with 100 μM dithiothreitol increased the reaction rate, consistent with increased access of the enzyme after reduction of cell wall disulfide cross-links. Such treatment did not increase cell permeability to propidium iodide, in contrast to effects of higher concentrations of reducing agents. An amine-specific membrane-impermeant biotinylation reagent specifically inactivated extracellular GAPDH. The enzyme was secreted again after a 30- to 60-min lag following the inactivation, and there was no concomitant increase in propidium iodide staining. There were about 4 × 104 active GAPDH molecules per cell at steady state, and secretion studies showed replenishment to that level 1 h after inactivation. These results establish conditions for specific quantitative assays of cell wall proteins in the absence of cytoplasmic leakage and for subsequent quantification of secretion rates in intact cells.IMPORTANCE Eukaryotic cells secrete many proteins, including many proteins that do not follow the classical secretion pathway. Among these, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is unexpectedly found in the walls of yeasts and other fungi and in extracellular space in mammalian cell cultures. It is difficult to quantify extracellular GAPDH, because leakage of just a little of the very large amount of cytoplasmic enzyme can invalidate the determinations. We used enzymatic assays of intact cells while also maintaining membrane integrity. The results lead to estimates of the amount of extracellular enzyme and its rate of secretion to the wall in intact cells. Therefore, enzyme assays under controlled conditions can be used to investigate nonconventional secretion more generally.

UI MeSH Term Description Entries
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012634 Bodily Secretions Endogenous substances produced through the activity of intact cells of glands, tissues, or organs. Secretions,Bodily Secretion,Secretion,Secretion, Bodily,Secretions, Bodily

Related Publications

Michael J Cohen, and Brianne Philippe, and Peter N Lipke
November 2017, Cold Spring Harbor protocols,
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
January 1982, Annual review of biochemistry,
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
August 1975, Archives of microbiology,
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
August 1956, Science (New York, N.Y.),
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
November 2014, Food chemistry,
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
June 1994, Mycopathologia,
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
April 1970, Journal of bacteriology,
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
November 1969, The Biochemical journal,
Michael J Cohen, and Brianne Philippe, and Peter N Lipke
January 1982, Advances in microbial physiology,
Copied contents to your clipboard!