The EcoR V restriction endonuclease. 1987

P A Luke, and S A McCallum, and S E Halford
Anglian Biotechnology Ltd., Colchester, U.K.

Type II restriction endonucleases have attracted attention for two main reasons: firstly, their many applications in the dissection of DNA and in the construction of novel DNA molecules; secondly, as systems for studying the interactions of proteins with specific DNA sequences. With respect to the latter, the EcoR I restriction endonuclease has been examined in greater depth than any other type II enzyme [1-3]. However, the EcoR I enzyme has a major disadvantage as a system for studying DNA-protein interactions: the protein has a remarkably low solubility. The solutions in which EcoR I shows maximal activity, and also affinity for its recognition site, are saturated at less than 0.5 microM of this protein [4]. Consequently, many techniques that have been developed to study protein-ligand interactions but which require high concentrations of the protein in solution, such as NMR spectroscopy, cannot be used on EcoR I. But this drawback does not apply to all type II restriction enzymes. A different enzyme, the EcoR V restriction endonuclease [5-7], has special advantages as a system for studying DNA-protein interactions. In particular, this is the only type II restriction enzyme (apart from EcoR I [3]) for which crystals of the protein have been reported [7].

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

P A Luke, and S A McCallum, and S E Halford
June 1985, Nucleic acids research,
P A Luke, and S A McCallum, and S E Halford
January 1987, Gene amplification and analysis,
P A Luke, and S A McCallum, and S E Halford
February 1991, Journal of chromatography,
P A Luke, and S A McCallum, and S E Halford
April 2000, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
P A Luke, and S A McCallum, and S E Halford
January 1987, Gene amplification and analysis,
P A Luke, and S A McCallum, and S E Halford
February 1994, Proceedings of the National Academy of Sciences of the United States of America,
P A Luke, and S A McCallum, and S E Halford
November 1974, Journal of molecular biology,
P A Luke, and S A McCallum, and S E Halford
January 1985, Voprosy meditsinskoi khimii,
P A Luke, and S A McCallum, and S E Halford
November 1969, Biochimica et biophysica acta,
P A Luke, and S A McCallum, and S E Halford
April 1982, The Biochemical journal,
Copied contents to your clipboard!