Analysis of type II collagen RNA localization in chick wing buds by in situ hybridization. 1988

B J Swalla, and W B Upholt, and M Solursh
Department of Biology, University of Iowa, Iowa City 52242.

Type II collagen is a major component of cartilage extracellular matrix. Differentiation of mesenchyme into cartilage involves the cessation of type I collagen synthesis and the onset of type II collagen synthesis. Solution hybridization of mRNA isolated from chick limb buds with a cDNA probe to type II collagen mRNA showed the presence of small amounts of type II collagen message in mesenchymal chick limbs. We have examined the localization of type II collagen mRNA in mesenchymal chick wing buds by in situ hybridization using single stranded RNA probes. Our results show a small but detectable amount of type II collagen RNA distributed uniformly in early limbs until the first precartilage condensations form at stage 22. This is interesting because it is known that mesenchyme isolated from chick wing buds has the capacity to undergo chondrogenesis in culture, even if taken from nonchondrogenic areas of the limb. At stage 23, type II collagen mRNA is found at significantly increased levels in the cells of the precartilage condensation when compared to the other limb cells. As chondrogenesis proceeds, the amount of type II collagen RNA increases even more in cells of the cartilage elements. The signal in the peripheral tissue is indistinguishable from background. These results show that type II collagen message exists at low levels in cells throughout the mesenchymal chick wing bud, until the formation of the condensation results in an elevation of type II mRNA in the prechondrogenic cells found in the core of the limb.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011072 Poly U A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Polyuridylic Acids,Uracil Polynucleotides,Poly(rU),Acids, Polyuridylic,Polynucleotides, Uracil
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014921 Wings, Animal Movable feathered or membranous paired appendages by means of which certain animals such as birds, bats, or insects are able to fly. Animal Wing,Animal Wings,Wing, Animal

Related Publications

B J Swalla, and W B Upholt, and M Solursh
August 1993, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
B J Swalla, and W B Upholt, and M Solursh
January 1995, Methods in cell biology,
B J Swalla, and W B Upholt, and M Solursh
January 1993, Progress in clinical and biological research,
B J Swalla, and W B Upholt, and M Solursh
July 1990, Investigative ophthalmology & visual science,
B J Swalla, and W B Upholt, and M Solursh
May 1989, Developmental biology,
B J Swalla, and W B Upholt, and M Solursh
May 1995, Experimental eye research,
B J Swalla, and W B Upholt, and M Solursh
May 1988, Development (Cambridge, England),
B J Swalla, and W B Upholt, and M Solursh
November 1994, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Copied contents to your clipboard!