Analysis of type II and type X collagen synthesis in cultured growth plate chondrocytes by in situ hybridization: rapid induction of type X collagen in culture. 1994

R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, New York.

Type X collagen is produced by hypertrophic chondrocytes and serves as a highly specific marker for chondrocyte maturation. This study was designed to compare the expression of type II and type X collagen in growth plate sections and in distinct populations of chondrocytes in culture by in situ hybridization. Growth plate sections were treated with type II and type X collagen cDNA probes. Type II collagen mRNA was present throughout the growth plate but greatest in the lower proliferating and upper hypertrophic regions. In contrast, type X collagen was expressed only in the hypertrophic region. Northern analysis confirmed the specificity of the probe for type X collagen mRNA. Chick growth plate chondrocytes were separated by countercurrent centrifugal elutriation into five distinct populations and plated in serum-containing medium. These cultures were examined at varying times after plating for the expression of type II and type X collagen mRNA. At 3 h, type II collagen was present in the majority of the cells in all fractions, and approximately 15-20% of the cells expressed type X collagen mRNA. The cells expressing type X were from the hypertrophic region. At 24 h, however, nearly all cells in culture expressed type X mRNA, and there was a decrease in expression of type II collagen mRNA. Similar results were obtained in cultures in the absence of serum, and SDS-PAGE analysis of collagen synthesis confirmed the expression of type X collagen in all populations of fractionated cells at 24 h at the protein level. Type X collagen is an important marker through which cellular matruation can be evaluated in culture.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006132 Growth Plate The area between the EPIPHYSIS and the DIAPHYSIS within which bone growth occurs. Cartilage, Epiphyseal,Epiphyseal Cartilage,Epiphyseal Plate,Cartilages, Epiphyseal,Epiphyseal Cartilages,Epiphyseal Plates,Growth Plates,Plate, Epiphyseal,Plate, Growth,Plates, Epiphyseal,Plates, Growth
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
July 1991, Journal of cell science,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
March 1991, Experimental cell research,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
January 2011, Biomedical engineering online,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
January 1991, Experimental cell research,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
May 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
January 2005, Connective tissue research,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
January 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
October 1982, The Journal of biological chemistry,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
December 1992, Journal of cell science,
R J O'Keefe, and J E Puzas, and L Loveys, and D G Hicks, and R N Rosier
January 1988, Developmental biology,
Copied contents to your clipboard!