Cladribine inhibits secretion of pro-inflammatory cytokines and phagocytosis in human monocyte-derived M1 macrophages in-vitro. 2021

Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
Department of Technology, University College Copenhagen, Copenhagen, Denmark. Electronic address: CBKM@kp.dk.

Cladribine (Cd) is a purine nucleoside analogue which in an oral formulation is approved for treatment of patients with multiple sclerosis (MS). It is known to mediate the effect through a short-term selective reduction of lymphocytes with minimal effect on the innate immune system. However, a few studies have emerged, that also demonstrate a beneficial immunomodulatory effect of cladribine on monocyte-derived cells. As cladribine crosses the blood-brain barrier this effect could have clinical meaningful impact in the treatment of MS, where recruitment of innate cells such as M1 macrophages play a role in plaque development. Here, we investigated the in-vitro effect on monocyte differentiation into M1 and M2 macrophages and dendritic cells as well as the effect on activation of M1 macrophages. In our experiments, cladribine in therapeutic relevant in-vitro concentrations, did not lead to apoptosis in differentiated M1, M2 macrophages or DCs and did not interfere with the phenotype of these differentiated cells. In M1 macrophages, cladribine reduced the secretion of IL-6 and TNF-α observed after activation with LPS. Similar, cladribine reduced the phagocytic capacity of LPS activated M1 macrophages but did not affect unactivated cells. We conclude, that such reduction of inflammatory potential as well as reduced M1 phagocytic activity, e.g. within an MS plaque, could be an additional clinical meaningful effect of cladribine in the treatment of MS while at the same time it would leave M1 macrophages intact for the protection against infections.

UI MeSH Term Description Entries
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon

Related Publications

Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
August 1982, The Journal of experimental medicine,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
September 2010, Pharmacological research,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
January 2012, PloS one,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
August 1996, Biochimica et biophysica acta,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
January 2008, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
June 2018, Parasitology,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
July 1988, Biochemical and biophysical research communications,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
October 2001, Immunology and cell biology,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
January 2015, Journal of immunotoxicology,
Caroline B K Mathiesen, and Asha M Rudjord-Levann, and Monika Gad, and Jesper Larsen, and Finn Sellebjerg, and Anders Elm Pedersen
May 2009, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!