Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. 1988

K C Terlesky, and J G Ferry
Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061.

A ferredoxin, which functions as an electron acceptor for the CO dehydrogenase complex from Methanosarcina thermophila, was purified from acetate-grown cells. It was isolated as a trimer having a native molecular weight of approximately 16,400 and monomer molecular weight of 4,888 calculated from the amino acid composition. The ferredoxin contained 2.80 +/- 0.56 Fe atoms and 1.98 +/- 0.12 acid-labile sulfide. UV-visible absorption maxima were 395 and 295 nm with monomeric extinction coefficients of epsilon 395 = 12,800 M-1 cm-1 and epsilon 295 = 14,460 M-1 cm-1. The A395/A295 ratio ranged from 0.80 to 0.88. There were 5 cysteines per monomer but no methionine, histidine, arginine, or aromatic amino acids. The N-terminal amino acid sequence showed a 4-cysteine cluster with potential to coordinate a Fe:S center. The protein was stable for 30 min at 70 degrees C, but denatured during incubation at 85 degrees C.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D019342 Acetic Acid Product of the oxidation of ethanol and of the destructive distillation of wood. It is used locally, occasionally internally, as a counterirritant and also as a reagent. (Stedman, 26th ed) Glacial Acetic Acid,Vinegar,Acetic Acid Glacial,Acetic Acid, Glacial,Glacial, Acetic Acid
D019605 Euryarchaeota A phylum of ARCHAEA comprising at least seven classes: Methanobacteria, Methanococci, Halobacteria (extreme halophiles), Archaeoglobi (sulfate-reducing species), Methanopyri, and the thermophiles: Thermoplasmata, and Thermococci. Archaeoglobi,Halobacteria,Methanoococci,Methanopyri,Thermococci,Thermoplasmata,Methanobacteria

Related Publications

K C Terlesky, and J G Ferry
November 1989, The Journal of biological chemistry,
K C Terlesky, and J G Ferry
December 1997, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!