Crystallization of acetate kinase from Methanosarcina thermophila and prediction of its fold. 1997

K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.

The unique biochemical properties of acetate kinase present a classic conundrum in the study of the mechanism of enzyme-catalyzed phosphoryl transfer. Large, single crystals of acetate kinase from Methanosarcina thermophila were grown from a solution of ammonium sulfate in the presence of ATP. The crystals diffract to beyond 1.7 A resolution. Analysis of X-ray data from the crystals is consistent with a space group of C2 and unit cell dimensions a = 181 A, b = 67 A, c = 83 A, beta = 103 degrees. Diffraction data have been collected from the crystals at 110 and 277 K. Data collected at 277 K extend to lower resolution, but are more reproducible. The orientation of a noncrystallographic two-fold axis of symmetry has been determined. Based on an analysis of the predicted amino acid sequences of acetate kinase from several organisms, we hypothesize that acetate kinase is a member of the sugar kinase/actin/hsp70 structural family.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000084 Acetate Kinase An enzyme that catalyzes reversibly the phosphorylation of acetate in the presence of a divalent cation and ATP with the formation of acetylphosphate and ADP. It is important in the glycolysis process. EC 2.7.2.1. Acetokinase,Kinase, Acetate
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000645 Ammonium Sulfate Sulfuric acid diammonium salt. It is used in CHEMICAL FRACTIONATION of proteins. Sulfate, Ammonium
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D017020 Methanosarcina A genus of anaerobic, irregular spheroid-shaped METHANOSARCINALES whose organisms are nonmotile. Endospores are not formed. These archaea derive energy via formation of methane from acetate, methanol, mono-, di-, and trimethylamine, and possibly, carbon monoxide. Organisms are isolated from freshwater and marine environments.

Related Publications

K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
April 2000, Biochemistry,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
March 1998, Journal of bacteriology,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
October 2000, The Journal of biological chemistry,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
April 2005, Journal of bacteriology,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
October 1988, The Journal of biological chemistry,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
December 2007, Biochemistry,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
June 2002, The Journal of biological chemistry,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
November 1993, Journal of bacteriology,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
November 2001, The Journal of biological chemistry,
K A Buss, and C Ingram-Smith, and J G Ferry, and D A Sanders, and M S Hasson
March 1988, The Journal of biological chemistry,
Copied contents to your clipboard!