Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. 1988

D E Born, and E W Rubel
Department of Otolaryngology, University of Virginia School of Medicine, Charlottesville 22908.

Studies of the avian auditory system indicate that neurons in nucleus magnocellularis (NM) and nucleus laminaris of young animals are dramatically altered by changes in the auditory receptor. We examined the role of presynaptic activity on these transneuronal regulatory events. TTX was used to block action potentials in the auditory nerve. TTX injections into the perilymph reliably blocked all neuronal activity in the cochlear nerve and NM. Far-field recordings of sound-evoked potentials revealed that responses returned within 6-12 hr after a single TTX injection. Changes in protein synthesis by NM neurons were measured by determining the incorporation of 3H-leucine using autoradiography. NM neurons on the side of the brain ipsilateral to the TTX injection were compared to normally active cells on the other side of the same tissue section. Grain counts over individual neurons revealed that a single injection of TTX produced a 40% decrease in grain density in ipsilateral NM neurons within 1.5 hr after the TTX injection. However, by 24 hr after a single TTX injection, grain densities were not different on the 2 sides of the brain. Continuous activity blockade for 6 hr caused the cessation of amino acid incorporation in a portion of NM neurons and a 15-20% decrease in the remaining neurons. These changes in amino acid incorporation are comparable to those following complete removal of the cochlea (Steward and Rubel, 1985). We also examined NM for neuron loss and soma shrinkage after blocking eighth nerve action potentials. TTX injected every 12 hr for 48 hr caused a 20% neuron loss and an 8% shrinkage of the remaining neurons. Similar reductions were found following cochlea removal (Born and Rubel, 1985). It is concluded that neuronal activity plays a major role in the maintenance of normal NM neurons. Furthermore, these results suggest that transneuronal morphological changes seen in neurons following deafferentation or alterations of sensory experience are a result of changes in the level of presynaptic activity.

UI MeSH Term Description Entries
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

D E Born, and E W Rubel
February 1979, The Journal of comparative neurology,
D E Born, and E W Rubel
August 1978, The Journal of comparative neurology,
Copied contents to your clipboard!