Afferent influences on brain stem auditory nuclei of the chicken: effects of conductive and sensorineural hearing loss on n. magnocellularis. 1985

D L Tucci, and E W Rubel

Nucleus magnocellularis is the avian homologue of the spherical cell region of the mammalian anteroventral cochlear nucleus. Its primary excitatory synaptic input is from large end bulbs of Held from the eighth nerve ganglion cells. We have examined the effects of three peripheral manipulations--middle ear ossicle (columella) removal (monaural and binaural), columella removal and oval window puncture (monaural), and monaural earplug--on cross-sectional cell area ("cell size") of second-order auditory neurons in n. magnocellularis of the chicken. Manipulations were performed between embryonic day 19 and posthatch day 4. Survival time was varied from 2 to 60 days. Air conduction and bone conduction thresholds were determined to assess for conductive and sensorineural hearing loss associated with each of these manipulations. Hair cell counts were made from basilar papillae of each experimental group. We found that a columella removal alone, which produced a 50-55-dB purely conductive hearing loss, was not associated with changes in cell size of n. magnocellularis neurons. Similarly, chronic monaural earplugging did not affect the cross-sectional area of these second-order auditory neurons. Conversely, a combined columella removal and oval window puncture, which produced a mixed hearing loss with a 15-40-dB sensorineural component was associated with an 18-20% reduction in n. magnocellularis cell area. Hair cell counts for experimental ears were not significantly different from control ears. These results, in conjunction with measurements of multiunit activity recorded in n. magnocellularis, suggest that manipulations which markedly attenuate extrinsic auditory stimulation, but do not result in chronic change in the average activity levels, also do not influence the size of n. magnocellularis cell bodies. On the other hand, a manipulation which influences overall activity levels, but does not result in degeneration of receptor cells, resulted in marked changes in n. magnocellularis cell size.

UI MeSH Term Description Entries
D010046 Oval Window, Ear Fenestra or oval opening on the lateral wall of the vestibular labyrinth adjacent to the MIDDLE EAR. It is located above the cochlear round window and normally covered by the base of the STAPES. Oval Window of Ear,Oval Windows, Ear
D001844 Bone Conduction Transmission of sound waves through vibration of bones in the SKULL to the inner ear (COCHLEA). By using bone conduction stimulation and by bypassing any OUTER EAR or MIDDLE EAR abnormalities, hearing thresholds of the cochlea can be determined. Bone conduction hearing differs from normal hearing which is based on air conduction stimulation via the EAR CANAL and the TYMPANIC MEMBRANE. Bone Conduction Hearing,Conduction Hearing, Bone,Conduction, Bone,Hearing, Bone Conduction
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D004429 Ear Ossicles A mobile chain of three small bones (INCUS; MALLEUS; STAPES) in the TYMPANIC CAVITY between the TYMPANIC MEMBRANE and the oval window on the wall of INNER EAR. Sound waves are converted to vibration by the tympanic membrane then transmitted via these ear ossicles to the inner ear. Auditory Ossicles,Auditory Ossicle,Ear Ossicle,Ossicle, Auditory,Ossicle, Ear,Ossicles, Auditory,Ossicles, Ear
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006314 Hearing Loss, Conductive Hearing loss due to interference with the mechanical reception or amplification of sound to the COCHLEA. The interference is in the outer or middle ear involving the EAR CANAL; TYMPANIC MEMBRANE; or EAR OSSICLES. Conductive Hearing Loss
D006319 Hearing Loss, Sensorineural Hearing loss resulting from damage to the COCHLEA and the sensorineural elements which lie internally beyond the oval and round windows. These elements include the AUDITORY NERVE and its connections in the BRAINSTEM. Deafness Neurosensory,Deafness, Neurosensory,Deafness, Sensoryneural,Neurosensory Deafness,Sensorineural Hearing Loss,Sensoryneural Deafness,Cochlear Hearing Loss,Hearing Loss, Cochlear,Deafnesses, Neurosensory,Deafnesses, Sensoryneural,Neurosensory Deafnesses,Sensoryneural Deafness,Sensoryneural Deafnesses
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D L Tucci, and E W Rubel
January 1979, The Annals of otology, rhinology, and laryngology,
D L Tucci, and E W Rubel
March 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D L Tucci, and E W Rubel
February 1979, The Journal of comparative neurology,
D L Tucci, and E W Rubel
October 1991, Journal of speech and hearing research,
Copied contents to your clipboard!