Neuronal organization of fetal striatal grafts in kainate- and sham-lesioned rat caudate nucleus: light- and electron-microscopic observations. 1988

M DiFiglia, and L Schiff, and A W Deckel
Department of Neurology, Harvard Medical School, Boston, Massachusetts 02114.

Behavioral and biochemical studies have suggested that fetal striatal grafts in the adult rat neostriatum can reverse deficits induced by excitotoxic lesions of the host caudate tissue. In this study, fetal day 17-18 striatal grafts were examined at 2, 5-6, 12, and 44-48 weeks following their implantation into saline- or kainic acid-treated host caudate nucleus in order to compare the neuronal organization of the grafts and the host caudate nucleus and to determine whether the differentiation of graft tissue was influenced by the period of implantation or prior lesion of the host caudate nucleus with kainic acid. Compared to host neostriatum, the grafts at the light-microscopic level lacked bundles of myelinated axons and had neurons that were tightly packed in clusters and rich in Nissl substance. Neurons in the grafts were mostly of medium size, had significantly larger cross-sectional areas, and more frequently exhibited indented nuclei than host caudate neurons. At the electron-microscopic level, grafts 2 weeks following implantation contained many features seen in the normally developing neostriatum, such as growth cones, immature synapses, and degenerating profiles. Grafts appeared mature by 5-6 weeks and contained at least 6 types of neurons and 8 types of axon terminals, which formed synapses with cell bodies, dendrites, spines, and axon initial segments. Both symmetric and asymmetric synapses were found within the grafts. The density of synapses was significantly lower in all the transplants than in host tissue, with the exception of the 5-6 week grafts, where values were statistically comparable to host caudate. A significantly higher proportion of axodendritic synapses was present in the graft neuropil than in the caudate nucleus. The lengths of the synaptic junctions in the grafts were the same as those in the neostriatum. There was little qualitative or quantitative difference in synaptic organization between transplants in kainic acid and sham-lesioned host, with grafts in both host treatment conditions exhibiting the same synaptic density and proportion of axodendritic/axospinous synapses. The development of a high differentiated ultrastructure within striatal grafts is consistent with recent anatomical evidence showing interconnections between striatal grafts and host-lesioned caudate nucleus. Although graft neuropil shows striking similarities in neuronal organization to the caudate nucleus, it also exhibits some distinct differences that may have implications for understanding the functional properties of fetal striatal grafts in animal models of Huntington's disease.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M DiFiglia, and L Schiff, and A W Deckel
January 1998, Molecular and chemical neuropathology,
M DiFiglia, and L Schiff, and A W Deckel
January 1984, The Journal of comparative neurology,
M DiFiglia, and L Schiff, and A W Deckel
January 1993, Brain research bulletin,
M DiFiglia, and L Schiff, and A W Deckel
January 1992, Journal of neural transplantation & plasticity,
M DiFiglia, and L Schiff, and A W Deckel
January 1982, Acta anatomica,
Copied contents to your clipboard!