Comparison of pretreatment VMAT quality assurance with the integral quality monitor (IQM) and electronic portal imaging device (EPID). 2021

Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA.

The purpose of this study was to compare pretreatment volumetric modulated arc therapy (VMAT) quality assurance (QA) measurements and evaluate the multileaf collimator (MLC) error sensitivity of two detectors: the integral quality monitor (IQM) system (iRT systems IQM) and the electronic portal imaging device (EPID) (Varian PortalVision aS1200). Pretreatment QA measurements were performed for 20 retrospective VMAT plans (53 arcs). A subset of ten plans (23 arcs) was used to investigate MLC error sensitivity of each device. Eight MLC error plans were created for each VMAT plan. The errors included systematic opening/closing (±0.25, ±0.50, ±0.75 mm) of the MLC and random positional errors (1 mm) for individual/groups of leaves. The IQM was evaluated using the percent error of the measured cumulative signal relative to the calculated signal. The EPID was evaluated using two methods: a novel percent error of the measured relative to the predicted cumulative signals, and gamma (γ) analysis (1%/1 mm, 2%/2 mm, 3%/3 mm and 3%/1 mm for Stereotactic Body Radiation Therapy plans). The average change in maximum dose obtained from dose-volume histogram (DVH) data and change in detector signals for different systematic MLC shifts was also compared. Cumulative signal differences showed similar levels of agreement between measured and expected detector signals (IQM: 1.00 ± 0.55%; EPID: 1.22 ± 0.92%). Results from γ analysis lacked specificity. Only the 1%/1 mm criteria produced data with remarkable differences. A strong linear correlation was observed between IQM and EPID cumulative signal differences with MLC error magnitude (R = 0.99). Likewise, results indicate a strong correlation between the cumulative signal for both detectors and DVH dose (RIQM  = 0.99; REPID  = 0.97). In conclusion, use of cumulative signal differences could be more useful for detecting errors in treatment delivery in EPID than γ analysis.

UI MeSH Term Description Entries
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D004581 Electronics The study, control, and application of the conduction of ELECTRICITY through gases or vacuum, or through semiconducting or conducting materials. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Electronic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012189 Retrospective Studies Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons. Retrospective Study,Studies, Retrospective,Study, Retrospective
D050397 Radiotherapy, Intensity-Modulated CONFORMAL RADIOTHERAPY that combines several intensity-modulated beams to provide improved dose homogeneity and highly conformal dose distributions. Helical Tomotherapy,Intensity-Modulated Arc Therapy,Volumetric-Modulated Arc Therapy,Arc Therapies, Intensity-Modulated,Arc Therapies, Volumetric-Modulated,Arc Therapy, Intensity-Modulated,Arc Therapy, Volumetric-Modulated,Helical Tomotherapies,Intensity Modulated Arc Therapy,Intensity-Modulated Arc Therapies,Intensity-Modulated Radiotherapies,Intensity-Modulated Radiotherapy,Radiotherapies, Intensity-Modulated,Radiotherapy, Intensity Modulated,Therapies, Intensity-Modulated Arc,Therapies, Volumetric-Modulated Arc,Therapy, Intensity-Modulated Arc,Therapy, Volumetric-Modulated Arc,Tomotherapies, Helical,Tomotherapy, Helical,Volumetric Modulated Arc Therapy,Volumetric-Modulated Arc Therapies
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
January 2013, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
November 2007, Ai zheng = Aizheng = Chinese journal of cancer,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
January 2019, Journal of medical physics,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
January 1996, International journal of radiation oncology, biology, physics,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
March 2011, Medical physics,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
November 1995, Physics in medicine and biology,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
August 2013, Physics in medicine and biology,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
January 2006, Igaku butsuri : Nihon Igaku Butsuri Gakkai kikanshi = Japanese journal of medical physics : an official journal of Japan Society of Medical Physics,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
February 1997, Medical physics,
Melissa Ghafarian, and Michael Price, and Manuel Morales-Paliza
July 2012, Journal of applied clinical medical physics,
Copied contents to your clipboard!