Nonomuraea cypriaca sp. nov., isolated from soil. 2021

Aysel Veyisoglu
Department of Medical Services and Techniques, Vocational School of Health Services, Sinop University, 57000, Sinop, Turkey. aveyisoglu@sinop.edu.tr.

A novel actinobacterium, designated strain K274T, was isolated from soil collected from Zafer Cape (Cape Apostolos Andreas), the easternmost tip of Cyprus on the Karpas peninsula, Magusa, Northern Cyprus, and a polyphasic approach was used for characterization of the strain. The isolate was found to have chemotaxonomic and morphological properties associated with members of the genus Nonomuraea. The strain has the highest similarity to Nonomuraea zeae DSM 100528T with 99.1% similarity value. In the phylogenetic dendogram based on 16S rRNA gene sequence, strain K274T was formed a distinct clade together N. zeae DSM 100528T, 'Nonomuraea basaltis' 160415 (98.9% similarity), and 'Nonomuraea lycopersici' NEAU-DE8(1) (98.2% similarity). The genome sequence of strain K274T was 11.5 Mbp in size with a total of 11,848 protein-coding genes and 75 RNA genes. The genomic G + C content of the novel strain was 69.7 mol%. Both average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) results between the strain and phlyogenetic neighbours were well below the threshold value, and the novelty are supported by phenotypic and chemotaxonomic differences. Because of all these, strain K274T represents a novel species in the genus Nonomuraea, for which the name Nonomuraea cypriaca sp. nov. is proposed. The type strain is K274T (= DSM 45718T = KCTC 29095T).

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003535 Cyprus An island republic in the eastern Mediterranean Sea. Its capital is Nicosia. It was colonized by the Phoenicians and ancient Greeks and ruled successively by the Assyrian, Persian, Ptolemaic, Roman, and Byzantine Empires. It was under various countries from the 12th to the 20th century but became independent in 1960. The name comes from the Greek Kupros, probably representing the Sumerian kabar or gabar, copper, famous in historic times for its copper mines. The cypress tree is also named after the island. (From Webster's New Geographical Dictionary, 1988, p308 & Room, Brewer's Dictionary of Names, 1992, p134)
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012988 Soil Microbiology The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms. Microbiology, Soil
D015373 Bacterial Typing Techniques Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping. Bacteriocin Typing,Biotyping, Bacterial,Typing, Bacterial,Bacterial Biotyping,Bacterial Typing,Bacterial Typing Technic,Bacterial Typing Technics,Bacterial Typing Technique,Technic, Bacterial Typing,Technics, Bacterial Typing,Technique, Bacterial Typing,Techniques, Bacterial Typing,Typing Technic, Bacterial,Typing Technics, Bacterial,Typing Technique, Bacterial,Typing Techniques, Bacterial,Typing, Bacteriocin

Related Publications

Aysel Veyisoglu
February 2013, The Journal of antibiotics,
Aysel Veyisoglu
June 2012, International journal of systematic and evolutionary microbiology,
Aysel Veyisoglu
November 2018, Antonie van Leeuwenhoek,
Aysel Veyisoglu
January 2013, International journal of systematic and evolutionary microbiology,
Aysel Veyisoglu
October 2020, Archives of microbiology,
Aysel Veyisoglu
June 2019, International journal of systematic and evolutionary microbiology,
Aysel Veyisoglu
June 2011, International journal of systematic and evolutionary microbiology,
Aysel Veyisoglu
July 2012, International journal of systematic and evolutionary microbiology,
Aysel Veyisoglu
September 2011, International journal of systematic and evolutionary microbiology,
Copied contents to your clipboard!