Phosphate transport in intestinal brush-border membrane. 1988

S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
Department of Biochemistry, University College of Wales, Aberystwyth, UK.

In the small intestine of the rabbit the process of Na+-dependent uptake of phosphate occurs only at the brush-border of duodenal enterocytes. Li+ can replace Na+. The process is activated when either K+, Cs+, Rb+, or choline is present in the intravesicular space. The presence of membrane-permeable anions is essential for maximum rates of phosphate transport. We conclude that the mechanism of the phosphate carrier is electrogenic at pH 6-8, probably two Na+ moving with each H2PO4-. This will lead to the development of a positive charge within the vesicle. The variation of the Km for H2PO4- with pH is thought to be the consequence of the affinity of the carrier protein for H2PO4- increasing as the pH increases. Polyclonal antibodies against membrane vesicles isolated from rabbit duodenum, jejunum, and ileum were prepared. The antibodies raised against the ileum and jejunum both activated the phosphate transport process, while the anti-duodenum antibody preparation inhibited phosphate transport.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
March 1980, Biochemical and biophysical research communications,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
January 1986, Advances in experimental medicine and biology,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
August 1985, The American journal of physiology,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
February 1984, The American journal of physiology,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
June 1975, Biochimica et biophysica acta,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
January 1989, Gastroenterology,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
September 1985, The Journal of nutrition,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
November 1988, Biochimica et biophysica acta,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
March 1994, Biochemical pharmacology,
S P Shirazi-Beechey, and J P Gorvel, and R B Beechey
January 1986, Advances in experimental medicine and biology,
Copied contents to your clipboard!