Bisphenol A and Bisphenol S Oxidative Effects in Sheep Red Blood Cells: An In Vitro Study. 2021

E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
Department of Veterinary Medicine, University of Sassari, Sassari, Italy.

Bisphenols (BPs) are plastic components widely used worldwide and occurring in the environment. Exposure to these compounds is known to be harmful for animals and humans at different levels. The aim of this study was to evaluate and compare the oxidative effects of bisphenol A (BPA) and bisphenol S (BPS) in sheep. Reactive oxygen species (ROS) production and correlated structural alterations in sheep erythrocytes were investigated in vitro. Blood samples from four ewes were collected at fasting from the jugular vein using vacuum collection tubes containing EDTA. For ROS assay in erythrocytes, blood was properly diluted and BPA or BPS was added to obtain final bisphenol concentrations in the range between 1 and 300 μM. 2',7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA) 3 μM was added to the samples, and fluorescence was read in four replicates using a microplate reader. To evaluate erythrocyte shape, blood smears of blood treated with the different concentrations of BPS and BPA were prepared. A significant increase in ROS production was observed when concentrations of BPS and BPA increased from 1 to 100 μM (p < 0.05). At the higher concentrations of the two studied BPs (300 μM of BPS and 200-300 μM of BPA), a ROS decrease was observed when compared to the control group (p < 0.01). Erythrocytes' shape alterations were observed in cells treated with BPS and BPA 200-300 μM 4 hours after the beginning of the treatment. This study confirms that BPA and BPS exhibit oxidative effects on sheep erythrocytes. At higher concentrations, BPA was able to modify erythrocytes' shape, while BPS altered their membrane as a sign of a protein clustering that could lead to eryptosis. These BPs' effects are consequent to intracellular ROS increase.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001559 Benzhydryl Compounds Compounds which contain the methyl radical substituted with two benzene rings. Permitted are any substituents, but ring fusion to any of the benzene rings is not allowed. Diphenylmethyl Compounds,Compounds, Benzhydryl,Compounds, Diphenylmethyl
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D013450 Sulfones Sulfone
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
June 2017, Toxicology in vitro : an international journal published in association with BIBRA,
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
August 2021, Reproductive toxicology (Elmsford, N.Y.),
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
April 2016, Journal of hazardous materials,
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
January 2020, Endocrine, metabolic & immune disorders drug targets,
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
April 2019, Chemosphere,
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
December 1974, Cellular immunology,
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
August 2020, Chemosphere,
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
October 2014, Toxicology and applied pharmacology,
E Baralla, and M P Demontis, and M V Varoni, and V Pasciu
July 2019, Chemosphere,
Copied contents to your clipboard!