virA and virG are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone. 1988

C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
Department of Botany, University of Durham, UK.

Octopine and nopaline Ti-plasmids confer upon Agrobacterium tumefaciens C58C1 the ability to respond chemotactically to the vir-inducing phenolic wound exudate, acetosyringone. A. tumefaciens C58C1 containing Ti-plasmids with Tn5 insertions in virB, C, D or E exhibited marked chemotaxis towards acetosyringone. However, Ti-plasmids with mutations in virA or virG were unable to confer the responsive phenotype. Of the cosmid clones pVK219 (virAB) pVK221 (virBGC) pVK225 (virGCDE) and pVK257 (virABGC) mobilized to cured A. tumefaciens C58C1, only pVK257 bestowed acetosyringone chemotaxis. virA and virG are thus required for chemotaxis of A. tumefaciens towards acetosyringone. This suggests a multifunctional role for virA and virG: at low concentrations of acetosyringone they mediate chemotaxis and at higher concentrations they effect vir-induction.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000072236 Methyl-Accepting Chemotaxis Proteins Transmembrane sensor receptor proteins that are central components of the chemotactic systems of a number of motile bacterial species which include ESCHERICHIA COLI and SALMONELLA TYPHIMURIUM. Methyl-accepting chemotaxis proteins derive their name from a sensory adaptation process which involves methylation at several glutamyl residues in their cytoplasmic domain. Methyl-accepting chemotaxis proteins trigger chemotactic responses across spatial chemical gradients, causing organisms to move either toward favorable stimuli or away from toxic ones. Methyl-Accepting Chemotaxis Protein,MACP-I,MACP-II,Methyl Accepting Chemotaxis Protein 1,Methyl Accepting Chemotaxis Protein 2,Methyl Accepting Chemotaxis Protein 3,Methyl-Accepting Chemotaxis Protein I,Methyl-Accepting Chemotaxis Protein II,Methyl-Accepting Chemotaxis Protein III,Chemotaxis Protein, Methyl-Accepting,Chemotaxis Proteins, Methyl-Accepting,Methyl Accepting Chemotaxis Protein,Methyl Accepting Chemotaxis Protein I,Methyl Accepting Chemotaxis Protein II,Methyl Accepting Chemotaxis Protein III,Methyl Accepting Chemotaxis Proteins,Protein, Methyl-Accepting Chemotaxis,Proteins, Methyl-Accepting Chemotaxis

Related Publications

C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
January 2008, Advances in experimental medicine and biology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
July 2001, Journal of bacteriology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
September 1988, Journal of bacteriology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
November 1987, Plant molecular biology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
March 1988, Plant molecular biology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
January 1994, Research in microbiology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
November 2004, Chembiochem : a European journal of chemical biology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
January 1991, Molecular plant-microbe interactions : MPMI,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
October 1989, Journal of bacteriology,
C H Shaw, and A M Ashby, and A Brown, and C Royal, and G J Loake, and C H Shaw
August 1994, Plant molecular biology,
Copied contents to your clipboard!