Responses of simple and complex cells to random dot patterns: a quantitative comparison. 1988

B C Skottun, and D H Grosof, and R L De Valois
Physiological Optics Group, University of California, Berkeley 94720.

1. There are several reports that random dot patterns are potent stimuli for cortical complex cells but not for simple cells. This finding is regarded as evidence against Hubel and Wiesel's hierarchical model of cortical circuitry, in which simple cells are the principal input to complex cells. We have reinvestigated the question quantitatively by recording responses to dot patterns from 106 cells in area 17 and the 17/18 border region of normal adult cats. 2. The cells were classified as simple (n = 62) or complex (n = 40) (4 were end stopped or hypercomplex) on the basis of whether they gave modulated (AC) or unmodulated (DC) responses to drifting sine gratings. 3. Although there are large within-group differences, we found both simple and complex cells that respond to bright random dots on a dark background, drifted across the receptive field at 3 degrees/s. The responses at the optimal direction averaged 6.2 and 18.1 spikes/s (spontaneous activity subtracted) for simple and complex cells, respectively. 4. We also recorded responses to drifting sine gratings. Complex cells were also found to respond more than simple cells to these stimuli. For each cell, we calculated a dot index expressing the dot response relative to grating response. The dot index averaged 0.43 for simple cells and 0.55 for complex cells. It therefore appears that much of the difference in response to dot patterns reflects a difference in general responsivity. 5. In subsamples of cells, we examined the effects of varying dot density, dot size, and drift velocity. These variables affect different cells in a manner largely independent of cell class. Most simple cells in our sample responded well to random dot patterns at several velocities, at two different dot sizes and at both 3 and 50% dot densities. 6. Our results agree with previous studies in showing that complex cells respond more vigorously than simple cells to dot patterns, but the fact that many simple cells also respond to these stimuli makes our results consistent with a hierarchical model of cortical circuitry.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

B C Skottun, and D H Grosof, and R L De Valois
January 1991, Vision research,
B C Skottun, and D H Grosof, and R L De Valois
August 1993, Neuroreport,
B C Skottun, and D H Grosof, and R L De Valois
September 1995, Journal of neurophysiology,
B C Skottun, and D H Grosof, and R L De Valois
January 2016, Journal of optometry,
B C Skottun, and D H Grosof, and R L De Valois
December 1973, Nature,
B C Skottun, and D H Grosof, and R L De Valois
October 1994, Vision research,
B C Skottun, and D H Grosof, and R L De Valois
January 2006, Experimental brain research,
B C Skottun, and D H Grosof, and R L De Valois
January 2002, Journal of neurophysiology,
B C Skottun, and D H Grosof, and R L De Valois
January 1995, Perception,
B C Skottun, and D H Grosof, and R L De Valois
January 1989, Vision research,
Copied contents to your clipboard!