Intracellular bioorthogonal labeling of glucagon receptor via tetrazine ligation. 2021

Yulin Tian, and Ming Fang, and Qing Lin
Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, United States; Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.

The third intracellular loop (ICL3) in the cytosolic face of glucagon receptor (GCGR) experiences significant conformational transition during receptor activation. It thus offers an attractive site for the introduction of organic fluorophores in our efforts to construct fluorescence-based GPCR biosensors. Herein, we report our confocal microscopic study of intracellular fluorescent labeling of ICL3 using a bioorthogonal chemistry strategy. Our approach involves the site-specific introduction of a strained alkene amino acid into the ICL3 through genetic code expansion, followed by a highly specific inverse electron-demand Diels-Alder reaction with the fluorescent tetrazine probes. Among the three strained alkene amino acids examined, both SphK and 2'-aTCOK offered successful fluorescent labeling of GCGR ICL3 with the appropriate tetrazine probes. At the same time, 4'-TCOK gave high background fluorescence due to its intracellular retention. The fluorescent tetrazine probes were designed following a computational model for background-free intracellular fluorescent labeling; however, their performance varied significantly in live-cell imaging as the strong non-specific signals interfered with the specific ones. Among all GCGR ICL3 mutants bearing a strained alkene, the H339SphK/2'-aTCOK mutants provided the best reaction partners for the BODIPY-Tz1/4 reagents in the bioorthogonal labeling reactions. The results from this study highlight the challenges in identifying bioorthogonal reactant pairs suitable for intracellular labeling of low-abundance receptors in live-cell imaging studies.

UI MeSH Term Description Entries
D001896 Boron Compounds Inorganic or organic compounds that contain boron as an integral part of the molecule. Borides,Compounds, Boron
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006573 Heterocyclic Compounds, 1-Ring Organic compounds that contain a ring structure made up of carbon and one or more additional elements such as nitrogen and oxygen. Heterocyclic Cpds, 1-Ring,1-Ring Heterocyclic Compounds,1-Ring Heterocyclic Cpds,Heterocyclic Compounds, 1 Ring,Heterocyclic Cpds, 1 Ring
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D018027 Receptors, Glucagon Cell surface receptors that bind glucagon with high affinity and trigger intracellular changes which influence the behavior of cells. Activation of glucagon receptors causes a variety of effects; the best understood is the initiation of a complex enzymatic cascade in the liver which ultimately increases the availability of glucose to body organs. Glucagon Receptors,Glucagon Receptor,Receptor, Glucagon

Related Publications

Yulin Tian, and Ming Fang, and Qing Lin
June 2016, Chemistry (Weinheim an der Bergstrasse, Germany),
Yulin Tian, and Ming Fang, and Qing Lin
September 2017, Journal of the American Chemical Society,
Yulin Tian, and Ming Fang, and Qing Lin
February 2024, Angewandte Chemie (International ed. in English),
Yulin Tian, and Ming Fang, and Qing Lin
January 2019, Communications biology,
Yulin Tian, and Ming Fang, and Qing Lin
January 2021, Molecules (Basel, Switzerland),
Yulin Tian, and Ming Fang, and Qing Lin
May 2014, Chemical communications (Cambridge, England),
Yulin Tian, and Ming Fang, and Qing Lin
April 2018, Bioconjugate chemistry,
Yulin Tian, and Ming Fang, and Qing Lin
May 2021, Chembiochem : a European journal of chemical biology,
Copied contents to your clipboard!