Expanding the phenotype of AFG3L2 mutations: Late-onset autosomal recessive spinocerebellar ataxia. 2021

Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, No.155, Sec.2, Linong Street, Taipei, Taiwan.

The AFG3L2 gene encodes AFG3-like protein 2, which is a subunit of human mitochondrial ATPases associated with various cellular protease activities (m-AAA). The clinical spectrum of AFG3L2 mutations is broad. Dominant AFG3L2 mutations can cause autosomal dominant spinocerebellar ataxia type 28 (SCA28), whereas biallelic AFG3L2 mutations may lead to spastic ataxia 5 (SPAX5). However, the role of AFG3L2 mutations in autosomal recessive spinocerebellar ataxia (SCAR) remains elusive. The aim of this study is to delineate the clinical features and spectrum of AFG3L2 mutations in a Taiwanese cohort with cerebellar ataxia. Mutational analyses of AFG3L2 were carried out by targeted resequencing in a cohort of 133 unrelated patients with molecularly undetermined cerebellar ataxia. We identified one single patient carrying compound heterozygous mutations in AFG3L2, p.[R632*];[V723M] (c.[1894C > T];[2167G > A]). The patient has suffered from apparently sporadic and slowly progressive cerebellar ataxia, ptosis, and ophthalmoparesis since age 55 years. These findings expand the clinical spectrum of AFG3L2 mutations and suggest a new subtype of late-onset SCAR caused by biallelic AFG3L2 mutations.

UI MeSH Term Description Entries
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000074183 ATPases Associated with Diverse Cellular Activities A large highly conserved family of ATPases with diverse functions in cells that are characterized by the presence of a P-LOOP and a ring shape. They couple the energy generated by ATP hydrolysis to remodeling or mechanical translocation of their target molecules. AAA ATPase,AAA Protease,AAA+ ATPase,AAA+ Protease,AAA ATPases,AAA Proteases,AAA+ ATPases,AAA+ Proteases,ATPase, AAA,ATPase, AAA+,ATPases, AAA+,Protease, AAA,Protease, AAA+,Proteases, AAA,Proteases, AAA+
D049069 ATP-Dependent Proteases Proteases that contain proteolytic core domains and ATPase-containing regulatory domains. They are usually comprised of large multi-subunit assemblies. The domains can occur within a single peptide chain or on distinct subunits. ATP-Dependent Protease,ATP-Requiring Protease,Adenosine Triphosphate-Dependent Proteolytic System,ATP Dependent Protease,ATP Dependent Proteases,ATP Requiring Protease,Adenosine Triphosphate Dependent Proteolytic System,Protease, ATP-Dependent,Protease, ATP-Requiring,Proteases, ATP-Dependent
D020125 Mutation, Missense A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed) Missense Mutation,Missense Mutations,Mutations, Missense
D020754 Spinocerebellar Ataxias A group of predominately late-onset, cerebellar ataxias which have been divided into multiple subtypes based on clinical features and genetic mapping. Progressive ataxia is a central feature of these conditions, and in certain subtypes POLYNEUROPATHY; DYSARTHRIA; visual loss; and other disorders may develop. (From Joynt, Clinical Neurology, 1997, Ch65, pp 12-17; J Neuropathol Exp Neurol 1998 Jun;57(6):531-43) Spinocerebellar Ataxia Type 1,Spinocerebellar Ataxia Type 2,Spinocerebellar Ataxia Type 4,Spinocerebellar Ataxia Type 5,Spinocerebellar Ataxia Type 6,Spinocerebellar Ataxia Type 7,Spinocerebellar Atrophies,Autosomal Dominant Cerebellar Ataxia, Type II,Cerebellar Degeneration with Slow Eye Movements,Cerebelloparenchymal Disorder I,Dominantly-Inherited Spinocerebellar Ataxias,Menzel Type OPCA,OPCA with Macular Degeneration and External Ophthalmoplegia,OPCA with Retinal Degeneration,Olivopontocerebellar Atrophy 2,Olivopontocerebellar Atrophy I,Olivopontocerebellar Atrophy II,Olivopontocerebellar Atrophy III,Olivopontocerebellar Atrophy IV,Olivopontocerebellar Atrophy, Holguin Type,SCA1,Schut-Haymaker Type OPCA,Spinocerebellar Ataxia 1,Spinocerebellar Ataxia 2,Spinocerebellar Ataxia 4,Spinocerebellar Ataxia 5,Spinocerebellar Ataxia 6,Spinocerebellar Ataxia 7,Spinocerebellar Ataxia with Slow Eye Movements,Spinocerebellar Ataxia, Autosomal Dominant, with Sensory Axonal Neuropathy,Spinocerebellar Ataxia, Cuban Type,Spinocerebellar Ataxia-1,Spinocerebellar Ataxia-2,Spinocerebellar Ataxia-4,Spinocerebellar Ataxia-5,Spinocerebellar Ataxia-6,Spinocerebellar Ataxia-7,Spinocerebellar Ataxias, Dominantly-Inherited,Spinocerebellar Atrophy 2,Spinocerebellar Atrophy I,Spinocerebellar Atrophy II,Spinocerebellar Degeneration with Slow Eye Movements,Type 1 Spinocerebellar Ataxia,Type 2 Spinocerebellar Ataxia,Type 4 Spinocerebellar Ataxia,Type 5 Spinocerebellar Ataxia,Type 6 Spinocerebellar Ataxia,Type 7 Spinocerebellar Ataxia,Wadia Swami Syndrome,Wadia-Swami Syndrome,Ataxia 1, Spinocerebellar,Ataxia 2, Spinocerebellar,Ataxia 4, Spinocerebellar,Ataxia 5, Spinocerebellar,Ataxia 6, Spinocerebellar,Ataxia 7, Spinocerebellar,Ataxia, Dominantly-Inherited Spinocerebellar,Ataxia, Spinocerebellar,Ataxias, Dominantly-Inherited Spinocerebellar,Ataxias, Spinocerebellar,Atrophies, Spinocerebellar,Atrophy 2, Olivopontocerebellar,Atrophy 2, Spinocerebellar,Atrophy 2s, Olivopontocerebellar,Atrophy 2s, Spinocerebellar,Atrophy I, Olivopontocerebellar,Atrophy I, Spinocerebellar,Atrophy II, Olivopontocerebellar,Atrophy III, Olivopontocerebellar,Atrophy IIs, Spinocerebellar,Atrophy IV, Olivopontocerebellar,Atrophy IVs, Olivopontocerebellar,Atrophy, Spinocerebellar,Cerebelloparenchymal Disorder Is,Dominantly Inherited Spinocerebellar Ataxias,Dominantly-Inherited Spinocerebellar Ataxia,OPCA, Menzel Type,OPCA, Schut-Haymaker Type,Olivopontocerebellar Atrophy 2s,Olivopontocerebellar Atrophy IIIs,Olivopontocerebellar Atrophy IIs,Olivopontocerebellar Atrophy IVs,Olivopontocerebellar Atrophy Is,SCA1s,Schut Haymaker Type OPCA,Spinocerebellar Ataxia,Spinocerebellar Ataxia 1s,Spinocerebellar Ataxia 2s,Spinocerebellar Ataxia 4s,Spinocerebellar Ataxia 5s,Spinocerebellar Ataxia 6s,Spinocerebellar Ataxia 7s,Spinocerebellar Ataxia, Dominantly-Inherited,Spinocerebellar Ataxias, Dominantly Inherited,Spinocerebellar Atrophy,Spinocerebellar Atrophy 2s,Spinocerebellar Atrophy IIs,Spinocerebellar Atrophy Is,Swami Syndrome, Wadia,Syndrome, Wadia Swami,Syndrome, Wadia-Swami

Related Publications

Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
January 2012, Case reports in pediatrics,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
May 2011, Neurology,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
October 1989, Indian pediatrics,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
December 2023, Journal of human genetics,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
December 1989, Journal of neurology, neurosurgery, and psychiatry,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
January 2022, Journal of neurology,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
May 2014, Neurology,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
April 2014, Journal of molecular neuroscience : MN,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
May 2019, Neurologia,
Han-Lin Chiang, and Jong-Ling Fuh, and Yu-Shuen Tsai, and Bing-Wen Soong, and Yi-Chu Liao, and Yi-Chung Lee
March 2022, BMJ case reports,
Copied contents to your clipboard!