Transient developmental delays in infants with Duarte-2 variant galactosemia. 2021

Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America. Electronic address: susan.waisbren@childrens.harvard.edu.

Duarte galactosemia is not classic galactosemia, but rather an example of biochemical variant galactosemia that results in approximately 25% residual activity of galactose-1-phosphate uridylyltransferase (GALT) enzyme. In contrast, classic galactosemia is associated with complete or near complete absence of GALT activity. While infants with classic galactosemia are placed on galactose-restricted diets to prevent the acute and long-term manifestations of their metabolic disorder, while individuals with Duarte variant galactosemia (Duarte-2 galactosemia) do not require diet therapy. The long-term complications that are seen in classic galactosemia such as cerebellar ataxia, and hypergonadotropic hypogonadism do not occur in Duarte-2 galactosemia. While Duarte galactosemia does not appear to be a metabolic disease, it may have an impact on early neurodevelopmental outcomes. This study examined developmental outcomes and the need for special services in individuals with Duarte-2 galactosemia in comparison to individuals with classic galactosemia. We performed a medical record review of individuals with GALT deficiency who were evaluated at Boston Children's Hospital and enrolled in our study of outcomes in galactosemia. This included 95 participants, 21 with Duarte-2 galactosemia and 73 with classic galactosemia. Duarte-2 participants had developmental test scores within the average range. However, 42% of subjects with Duarte-2 galactosemia had participated in early intervention and/or special education and 32% received speech therapy. Their pattern of strengths and weaknesses in cognitive/language/motor domains was similar to that noted in participants with classic galactosemia, albeit to a milder degree. The data indicate that in children with Duarte-2 variant galactosemia, the cognitive/language and motor skills were within normal limits with their cognitive/language skills developing earlier than their motor skills during their first year of life. A history of diet treatment was not related to the use of special services. These results suggest that Duarte-2 galactosemia increases the risk for early mild developmental delays irrespective of treatment history, which resolves over time, and highlights the need to further assess neurodevelopment in early infancy, in Duarte-2 galactosemia. As Duarte-2 galactosemia is not a bona fide biochemical genetic disease, we hypothesize that elements in the genomic space that include the GALT gene are responsible for a transient delay in language-related motor skills during early infancy.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002657 Child Development The continuous sequential physiological and psychological maturing of an individual from birth up to but not including ADOLESCENCE. Infant Development,Development, Child,Development, Infant
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D005260 Female Females
D005693 Galactosemias A group of inherited enzyme deficiencies which feature elevations of GALACTOSE in the blood. This condition may be associated with deficiencies of GALACTOKINASE; UDPGLUCOSE-HEXOSE-1-PHOSPHATE URIDYLYLTRANSFERASE; or UDPGLUCOSE 4-EPIMERASE. The classic form is caused by UDPglucose-Hexose-1-Phosphate Uridylyltransferase deficiency, and presents in infancy with FAILURE TO THRIVE; VOMITING; and INTRACRANIAL HYPERTENSION. Affected individuals also may develop MENTAL RETARDATION; JAUNDICE; hepatosplenomegaly; ovarian failure (PRIMARY OVARIAN INSUFFICIENCY); and cataracts. (From Menkes, Textbook of Child Neurology, 5th ed, pp61-3) Galactokinase Deficiency Disease,Galactose-1-Phosphate Uridyl-Transferase Deficiency Disease,UDPglucose 4-Epimerase Deficiency Disease,Classic Galactosemia,Deficiency Disease, Galactokinase,Deficiency Disease, Galactose-1-Phosphate Uridyl-Transferase,Deficiency Disease, UDP-Galactose-4-Epimerase,Deficiency Disease, UDPglucose 4-Epimerase,Epimerase Deficiency Galactosemia,GALE Deficiency,GALK Deficiency,GALT Deficiency,Galactokinase Deficiency,Galactose Epimerase Deficiency,Galactose-1-Phosphate Uridyltransferase Deficiency,Galactose-1-Phosphate Uridylyltransferase Deficiency,Galactosemia,Galactosemia 2,Galactosemia 3,Galactosemia III,Galactosemia, Classic,Hereditary Galactokinase Deficiency,UDP-Galactose-4-Epimerase Deficiency,UDP-Galactose-4-Epimerase Deficiency Disease,UDPGlucose Hexose-1-Phosphate Uridylyltransferase Deficiency,UTP Hexose-1-Phosphate Uridylyltransferase Deficiency,UTP-Hexose-1-Phosphate Uridylyltransferase Deficiency Disease,Classic Galactosemias,Deficiencies, GALE,Deficiencies, GALK,Deficiencies, GALT,Deficiencies, Galactokinase,Deficiencies, Galactose Epimerase,Deficiencies, Galactose-1-Phosphate Uridyltransferase,Deficiencies, Galactose-1-Phosphate Uridylyltransferase,Deficiencies, Hereditary Galactokinase,Deficiencies, UDP-Galactose-4-Epimerase,Deficiency Disease, Galactose 1 Phosphate Uridyl Transferase,Deficiency Disease, UDP Galactose 4 Epimerase,Deficiency Disease, UDPglucose 4 Epimerase,Deficiency Diseases, UDP-Galactose-4-Epimerase,Deficiency Galactosemia, Epimerase,Deficiency Galactosemias, Epimerase,Deficiency, GALE,Deficiency, GALK,Deficiency, GALT,Deficiency, Galactokinase,Deficiency, Galactose Epimerase,Deficiency, Galactose-1-Phosphate Uridyltransferase,Deficiency, Galactose-1-Phosphate Uridylyltransferase,Deficiency, Hereditary Galactokinase,Deficiency, UDP-Galactose-4-Epimerase,Epimerase Deficiency Galactosemias,GALE Deficiencies,GALK Deficiencies,GALT Deficiencies,Galactokinase Deficiencies,Galactokinase Deficiencies, Hereditary,Galactokinase Deficiency Diseases,Galactokinase Deficiency, Hereditary,Galactose 1 Phosphate Uridyl Transferase Deficiency Disease,Galactose 1 Phosphate Uridyltransferase Deficiency,Galactose 1 Phosphate Uridylyltransferase Deficiency,Galactose Epimerase Deficiencies,Galactose-1-Phosphate Uridyltransferase Deficiencies,Galactose-1-Phosphate Uridylyltransferase Deficiencies,Galactosemia 2s,Galactosemia 3s,Galactosemia IIIs,Galactosemia, Epimerase Deficiency,Galactosemias, Classic,Galactosemias, Epimerase Deficiency,Hereditary Galactokinase Deficiencies,UDP Galactose 4 Epimerase Deficiency,UDP Galactose 4 Epimerase Deficiency Disease,UDP-Galactose-4-Epimerase Deficiencies,UDP-Galactose-4-Epimerase Deficiency Diseases,UDPGlucose Hexose 1 Phosphate Uridylyltransferase Deficiency,UDPglucose 4 Epimerase Deficiency Disease,UTP Hexose 1 Phosphate Uridylyltransferase Deficiency,UTP Hexose 1 Phosphate Uridylyltransferase Deficiency Disease,Uridyltransferase Deficiencies, Galactose-1-Phosphate,Uridyltransferase Deficiency, Galactose-1-Phosphate,Uridylyltransferase Deficiencies, Galactose-1-Phosphate,Uridylyltransferase Deficiency, Galactose-1-Phosphate
D005694 UTP-Hexose-1-Phosphate Uridylyltransferase An enzyme that catalyzes the synthesis of UDPgalactose from UTP and galactose-1-phosphate. It is present in low levels in fetal and infant liver, but increases with age, thereby enabling galactosemic infants who survive to develop the capacity to metabolize galactose. EC 2.7.7.10. Galactosephosphate Uridylyltransferase,UDP Galactose Pyrophosphorylase,Galactose-1-Phosphate Uridyltransferase,Galactose 1 Phosphate Uridyltransferase,Galactose Pyrophosphorylase, UDP,Pyrophosphorylase, UDP Galactose,UTP Hexose 1 Phosphate Uridylyltransferase,Uridyltransferase, Galactose-1-Phosphate,Uridylyltransferase, Galactosephosphate,Uridylyltransferase, UTP-Hexose-1-Phosphate
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
January 2019, Pediatrics,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
January 1972, Humangenetik,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
January 1987, JAMA,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
May 2019, Pediatrics,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
January 2022, JIMD reports,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
December 2012, Biochemical genetics,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
January 1977, Cytogenetics and cell genetics,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
February 1997, American journal of human genetics,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
January 1972, Zeitschrift fur Kinderheilkunde,
Susan E Waisbren, and Catherine Tran, and Didem Demirbas, and Cynthia S Gubbels, and Margaret Hsiao, and Vikram Daesety, and Gerard T Berry
May 1982, The Journal of pediatrics,
Copied contents to your clipboard!